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ITERATIVE METHODS FOR SOLVING LARGE LINEAR SYSTEMS

When dealing numerically with differential models one is often lead to solve very large
linear systems with sparse matrices. We will write such a system as

Ax=b, (56)

where A is a square matrix of order n, non-singular and sparse, b the column vector of
sources and x the column vector of unknowns.

We will denote by X the vector that solves this system of equations.

For our purposes it is useful to introduce the notion of residual vector (residual) of
equation (56) relative to a vector x:

r(x)=b—Ax. (57)

Note
X solves (56) = r(x)=0.
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Solution methods

@ Direct methods: they lead to solving the system by a finite number of algebraic
operations (assuming ideally an exact arithmetic) through suitable matrix
transformations (factorizations)

Classical examples are the Gaussian elimination method, or the Cholesky method
for symmetric positive-definite matrices, which rely, respectively, on the following
factorizations:

PA=LU, A=ccT.
Using a direct method might have a prohibitive cost, both in terms of memory
storage, given that the matrices L and U usually have much bigger number of
non-zero entries than A (a phenomenon called fill-in), and also in terms of number
of operations required to get to the solution.

o lterative methods: they generate, starting from a tentative vector x°, a sequence
{x"}1>0 that converges to X.
(Classical methods are Jacobi's, Gauss-Seidel's, relaxation methods, ...).
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Descent iterative methods

If A is a symmetric positive-definite matrix, then the solution X of the linear system
Ax=Db
can be seen as the unique minimum point of the functional
J:R" >R, J(x) = ix"Ax - x"b,
i.e., one has precisely

J(X) = min J(x) .

xER™

Then, the idea is building a sequence {x"};>0 such that
JX) << JJETY <) < JxEH < < J(XD)

with
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Properties of the functional J

Let x be any element in R™ and let dx denote an arbitrary incremento given to dx. Then,
J(x+6x) = $(x+ 6x)TA(x + 6x) — (x4 6x)"b

= Ix"Ax-x"b + (Ax—b)"ox + Lox"Adx

or, equivalently,

J(x+6x) = J(x) — r(x)"éx + %6XTA5X.

Comparing this to the Taylor expansion of the functional J in x for the increment dx
J(x+6x) = J(x) + VJ(x)"ox + %5XTHJ(X)§X +o,

we deduce that
VJ(x) = —r(x) and HJ(x)=A.

The absence of terms higher than degree two indicates that J is a quadratic functional
(an upper-concave parabola if n = 1, an elliptic paraboloid if n = 2, and so on).
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The relation
J(x40x) = J(x) — r(x)"ox + %5XTA6X

with x = X yields, for any x # 0,
J(X+06x) = J(X) + 10x"Adx > J(X),

since A is definite positive. This confirm the already anticipated property

J(X) = min J(x) .

x€eR™
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Mechanical interpretation

Consider the algebraic system
Au=f

produced by the finite-element discretization of the elastic membrane problem. The
corresponding functional J : RY — R is given by

J(v) = %UTA’U —o'f.

Let vy = Zj\;l vjp; € Vi be the discrete admissible displacement associated with the
vector v = (v;)1<j<n. Then, we have

UTAU://,L”V’l}h||2dII: and 'qu:/fvhd:I:,
Q Q
hence,
1@ =% [ plvenlP e = [ fonde = e
Q Q

where we heve defined, on the space V' of all admissible displacements, the functional

£:V =R, 8(v):%/p|\Vv||2dmf/fvdm.
Q Q

The latter represents the total energy of configuration v, given by the sum of the elastic
strain 3 [, ul|Vv||® da associated to the deformation with respect to the rest position,
and the potential energy — fQ f vdax relative to the external force.
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The minimum condition
J(u) = min J(v),

veERN

can be translated into
E(up) = min E(vp) , (58)

vp €VR
It tells that the solution u;, € V}, to the discrete variational problem is the configuration
that minimises the membrane’s total energy among all admissible discrete configurations.

In a similar fashion, one can prove that the solution u € V' of the exact variational
problem is characterised by
E(u) =min&(v) ,

veV

which expresses the Minimum Principle of the Total Energy: in an equilibrium state
the membrane’s configuration minimises the total energy of the system.

This Principle is equivalent to the Principle of Virtual Work.
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Descent direction and descend stepsize

A descent method is defined by a recursive relation of the sort
xkﬂ:karozkpk7 k=0,1,2,...,

where the vector p* is the descent vector, whereas the scalar a” is the descent step
size.

A vector p* is an admissible descent vector if

oJ
aT)k(xk) =VvJ(x")'p* <o,
that is, if the functional decreases as one moves very little along p*. Setting
rf = r(x") = —VJ(x*), the previous relationship becomes
(") p* >0.
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Line-search

Once a descent vector p® has been fixed, the step size o is uniquely determined by the
requirement that the functional J has the maximum decrease in that direction.
Setting

pla) = J(x" +ap”),

the step size o® will be such that

p(a) = minp(a) .

We have 1
pla) = J(x") —a(r")"p" + Sa? (") Ap"

proving that ¢(a) is a concave parabola, since (p*)” Ap* > 0.

Hence, the minumum point is characterized by the relation

k\T .k
Sol(ak) =0, which gives of = % .

The new residual is then computed as follows:
rrl=b- Ax"T'=b - Ax" — akApk =r*_ akApk .

138 / 246



The gradient method

Recalling the admissibility condition (rk)Tpk > 0, a natural choice consists in choosing
k k k
p=r (=-VJx)),

meaning we move in the direction of local steepest descent.
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The algorithm of the gradient goes like this:

x° arbitrary
r®=b— Ax°
For £k =0,1,... until convergence
zF = Ar”
e @
(rF)TzF
<Pt = xF 4 oFph
PRl = pk _ kR

Note that at each iteration we perform just one matrix-vector multiplication

(to compute z¥).
This is the most expensive part of the algorithm, the other steps being just operations on

vectors.
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The conjugate gradient method (CG-method)

A faster descent is obtained by choosing the new descent direction p**! in the form
k+1 k+1 k

p" =r"" 1 gp

where 8 = ¥ is determined so to satisfy
ENT A - k1

(") Ap" =0.
This means that two successive descent directions p* and p**! are A-orthogonal
(or, said equivalently, A-conjugate).

s
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The conjugate gradient algorithm is as follows:

x° arbitrary

r’=b-Ax°

pOII'O

For Kk =0,1,... until convergence
z" = Ap”
k_ (I'k)TPIc
~ N
XL = xF 4 oFph
R+l _ gk Rk
(rk+1)Trk+1

pk+1 — rk+1 + ﬁk+1pk

r

ﬁk+1 _

Note that, as before, the algorithm demands just one matrix-vector multiplication for
each iteration.
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Convergence - Rates of convergence

Let us measure the error x* — X in the so-called energy norm ||x||a = VxT Ax.

One shows that for the gradient method one has

condz(A) — 1

k
ZoeN) T 2 0 _ % >
condz2(A) + 1) " =Xl k20,

nﬁ—mmz(

whereas for the conjugate gradient method one has

k

A)—-1

It —xa <2 (VA T o GaL k>0,
cond2(A) + 1

This implies that to obtain a relative error reduction proportional to some € > 0, i.e., to
obtain .

[x" —%[la _

[[x° —XI|a

the number k of needed iterations will satisfy

k ~ 1|loge|condz(A) (gradient method) ,
k ~ %|10gz—:| cond2(A) (conjugate gradient method) .

143 / 246



Preconditioning

In order to furtherly reduce the number of iterations to achieve a given accuracy, a
popular strategy consists in applying the Conjugate Gradient method to the equivalent
algebraic system
P 'Ax=P 'b,
where P is a so-called preconditioning matrix for A, namely it satisfies the conditions
o cond2(P7*A) << condz(A);
o the entries of P are computable in a cheap way;

@ a matrix-product multiplication z = P!y, or equivalently the solution of a linear
system
Pz=y,

can be accomplished at a comparable cost to that of computing z = Ay.

By such a strategy, we obtain a preconditioned conjugate gradient method.

A technique that often leads to a rather effective preconditioning matrix is to construct
an incomplete factorisation of A.
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For a uniform triangulation of a square by means of 2N? rectangular triangles with edge
length h = N~!, one has:

Method Iter vs condition number Iter vs h or N
Gradient O(cond2(A)) O(h™2) = O(N?)
Conjugate Gradient O(y/cond2(A)) o™ =0(N)

Preconditioned Conjugate Gradient o(

(
cond2(P—1A)) | O(h™?) = O(V/N)

Here, denoting by
A =cc”

the Cholesky factorization of the symmetric positive-definite matrix A, one uses as a
preconditioner some

P=cc”, with C~C.
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