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THE MODEL OF ELASTIC STRING

Consider a thin elastic string with constant round cross section S. In absence of external
forces, the axis is aligned along the interval [0, L] on the coordinate axis z1. The elastic
is fixed at the endpoints of the interval.

Let us apply a (small) density of force f = 0e1 + Oez + fses per unit of volume lying on
the plane z12z3 and normal to the string axis. This induces a (small) dispacement

u = uje; + uzes + uges of the string from the reference position; more precisely,

u = u(x) denotes the displacement of the point particle at the point @ at reference
position.

The dispacement will be coplanar with the force, so that us = 0; at first approximation,

moreover, the component u; is negligible with respect to the component u3 that
describes the displacement along the force.
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Take z1 € (0,L) and let AVy = [z1,21 + Az] X S be an element of the string of length
Az at reference; denote by Yo ., = {x1} X S and 2o o, +a: = {z1 + Az} x S the cross
sections delimiting the element.




Under the applied force the element transforms into the element AV; let ¥,, and
Yz, +Az be the transformed cross sections. Indicate by

o1 Ti2 Ti3
Te1 02 T23 (1)
T31 T23 O3

19
I

the stress tensor of the string.

Now let n be the normal to the transformed section, oriented from the interior to the
exterior of AV. The equilibrium equation reads

de—l—/ gndZ—i—/ ond2=0. (2)
AV Sy +Az )

Ty
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Having assumed small dispacements we may, as first approximation, identify AV with
AVy, as well as the transformed cross sections with the reference one. This and the
assumption that the string is thin allows us to switch to a one-dimensional model. In fact,

z1+Az z1+Az
/ fdV ~ / fdV = / (/ f(x,:vg,wg)dxgdx;g) dxr = |S|/ f(z)dx,
AV AVy T S Tl

where | S| is the area of the section S and f(z) is the mean value of f over the section S
atz € (0,L):

Fla) = T;\ /S (2, 13, 5) dwadas

Proceeding in a similar manner with surface integrals we obtain the approximate
equations

:I‘1+A.’t
\S|/ x)de 4+ |S| G Ny yaz + |S|E 7Yz, =0. 3)
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Let us divide by |S| and note that by assumption, f2|;, 1A, =~ €1 and R, ~ —e;.
Furthermore, let us omit the symbol ~ to make the notation simpler. Therefore

z1+Az
/ f(z)dr + Teljz,+Az — T€lz;, =0. 4)

1

Now we take the component along x3 of this vector equation, i.e., we apply the dot
product with e3 to obtain

z1+Az
/ f3(z) dz + T31)21 4A2 — T31)z; = 0. (5)

ES
Dividing by Ax and taking the limit as Az — 0 brings us to the differential relation

falor) + @) =0, meO.L), ©)

expressing the string's equilibrium state. Here
T31

is the vertical component of the shear stress acting on the cross section.
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Now, we invoke Hooke's law, that relates the stress tensor o to the deformation, or
strain, tensor :
o = 2ue + Mr(e)I (7)

where A > 0, p > 0 are known as Lamé coefficients of the elastic material, g is the strain
tensor 5 5
1 U; Uj
e=(eijhsigss, =g (83:]- + o) (8)

tr(e) = €11 + €22 + €33 = V - w is its trace and I = (0;5)1<4,5<3 is the identity tensor.
Taking the component 3, 1 of equation (7) and recalling that u; is negligible with respect
to us, gives the approximate constitutive equation

Ous
T31 = /.Laiwj . (9)

Eventually, we omit indices in w3, 731 f3 just to simplify the notation. The coefficient g,
called shear modulus, can be expressed using Young's module E and the Poisson

coefficient v, as follows
E

sA+0) (10)

o=
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Thus, we have obtained the following system of equations:

dr

THf=0 in (0,1),

du .
T=po in (0,L), (11)
u(0) =u(L)=0,

where the latter tells that the string is fixed at the endpoints of the interval [0, L].
Substituting the expression for 7 in the former equation produces

,% (u%) = f in (07L) ) (12)
u(0) =u(L) =0.

Hence the string’s displacement solves a boundary value problem for a linear differential
equation of order two. The problem admits one, and one only, solution if, for instance,
and f are continuous functions (or piecewise continuous) on [0, L].
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It is easy to write u in terms of f by integration. Integrating the first equation of (11), in
fact, gives

T(z) = C1 —/ f(s)ds (13)
0
while integrating the second of (11) produces
“1(s)
u(x) = C +/ —=ds; 14
=C* e (14

substituting (13) in (14) leads to the required expression for u. The constraint w(0) = 0
implies straightforward C2 = 0, while the constant C is determined by imposing

u(L) =0, that is /OL ;Ez; ds =0.

However, the procedure to find the analytical solution just described may be rather
involved due to the computation of the integrals. In addition, it cannot be generalised to
bidimensional models.

For these reasons we opt for another way that consists in discretising problem (12) and
reducing it to a linear algebraic system.
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THE MODEL OF HEATED BEAM

Let us consider a thin metallic beam whose axis occupies the position of the interval
[0, L] on the z-axis. If we identify the beam with its axis, we are allowed to describe all
physical quantity of interest as functions of the abscissa x and time t.

In particular, we will see that the temperature u = u(x,t) of the material point of
abscissa x at time ¢ satisfies the equation

ou_ b (o) _
Lot " ox\"or) TP

@ p is the mass density per unit of length,

where

@ c is the specific heat of the beam,
o « is the coefficient of termal conductivity of the beam,

@ ¢ is the external heat contribution per unit of mass and length.
In the steady-state case, i.e., when all variables do not depend upon time, the equation

takes the simplified form
_d ( duy _
de \"dz ) TP
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Setting 1 = k and f = pgq, we thus obtain the same mathematical equation which
describes the equilibrium of the elastic string, namely,

o (u%) —/ i)

The equation has to be supplemented by one condition at each extremum of the interval
(boundary conditions). For instance, we can prescribe the temperature values go and gz
at the extrema:

uw0)=go,  u(l)=gr.

As an alternative, in addition to the temperature at one extremum we can prescribe the
heat flux at the opposite extremum, e.g.,

u(0) = go , (L) =41,

M

for a given vy..
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DISCRETIZATION BY FINITE DIFFERENCES

. L . .
Let NV be any integer > 1; let us set h = Nil In the interval [0, L] let us introduce
the equally-spaced nodes x; = hj, with j =0,1,..., N + 1. We have
O=x0<21 < ... <Tj—1 <Tj; <Tjp1 < ... <1'N<33N+1:L.

Such nodes form our computational grid.

Let us associate to each node x; a value u;, that we think as an approximation of the
displacement v at this node, i.e., u; ~ u(x;).

The prescribed boundary conditions immediately yield the values up = un41 = 0.

Hence, we have to determine the values u; at the internal nodes, whose number is N.
These values will be our discrete unknowns. In order to accomplish this task, we use the
differential equations at suitable internal points of the interval [0, L].
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A finite difference method is based on the two following fundamental ingredients:

@ the approximation of the derivatives that appear in the equations, by means of
suitable numerical differentiation formulas (such as incremental quotients); these
involve continguous nodes of the grid;

@ the requirement that the resulting equations be satisfied at the internal nodes.

In order to accomplish Step 1 above, a simple and natural choice consists of
approximating any derivative that appears in the equations by means of a centered
incremental quotient, based on two points symmetrically placed with respect to the point
at which we want to approximate the derivative; such an approximation turns out to be
more accurate than the one given by a backward or forward incremental quotient, again
based on two points.
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Let us first consider the remarkable particular case when the elastic coefficient pu is
constant in [0, L]. In this situation, the differential equation (12) which defines the
displacement becomes
d*u
a2 =T

Let us approximate the second derivative by the centered second incremental quotient

diu(m) Loulmio1) = 2u(@y) +u(jen) w1 —2u + Ui
dz2 ™77 T h? - h? ’

Step 2 consists in enforcing the equations

Uj—1 — 2Uj + Uj+1
h2

=fi, ji=1...,N, (15)

namely

o

ﬁ(*“j—lJr?uj*UHl):fj, j=1...,N,

where we have set f; = f(x;) (we assume here that f is a continuous function in [0, L]).
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The effect of the boundary conditions

o Note that, taking into account the boundary condition ug = 0, the first equation
(j = 1) involves only two unknowns:

%(2’[1‘1 — UQ) = f1 .

o Similarly, taking into account the boundary condition unx4+1 = 0, the last equation
(j = N) involves only two unknowns:

%( —un—1+2un) = fn .
@ On the other hand, all other equations (2 < 5 < N — 1) involve three consecutive

unknowns: "
iz (— -1+ 20 —un) = fj
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Hence, we have got a system of IV linear equations in the N internal unknowns u;. It
can be written in matrix form as

Au=f, (16)
with column vectors in R
uy fi
U f2
u=| : . f= ; (17)
UN—1 fnoa
uN N

and square matrix A of order N, whose elements a;j, are given by

2 if k=j,
ajk:% 1 if k=j+1, (18)

0 otherwise

which we write as L
A= ﬁtridiag -1 2 —-1].
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Note that the matrix A is tridiagonal, i.e., the non-zero elements appear only in the main
diagonal and in the first upper- and lower-diagonal.

This is a particular instance of a banded matrix, namely a matrix whose non-zero
elements are contained in a band made of 2m + 1 diagonals symmetrically placed around
the main diagonal (the integer m is called the band half-width); in our case, we have

m = 1.

In turns, a banded matrix with m much smaller than N is a particular instance of a
sparse matrix, i.e., a matrix such that the number of its non-zero elements is small
compared to the total number of elements; in our case, the non-zero elements are

3N — 2 out of a total of N? elements.

At last, our matrix is symmetric, since aj j4+1 = a;+1,; for any j.




Notation It is convenient to introduce a specific notation to indicate those tridiagonal

matrices having equal elements in each diagonal (with the possible exception of those in
the first and/or last row). Precisely, we will set

b ¢
a b c
b ¢
tridiagla b ] = ) (19)
a b ¢
a b c
a b
and
v
a b ¢
a b ¢
tridiag[b' ¢’; a b ¢; o’ V'] = ] (20)
a b c
a b c
a// b//
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Let us now consider the general case of a variable coefficient w in [0, L], namely
equations (11).

In order to realize the centered incremental quotients, it is convenient to enrich the
computational grid by introducing new nodes having a semi-integer index, namely
Tjy172 = h(j +1/2), with j =0,..., N; each of them is placed in between two
continguous nodes with integer indices. We associate to them the approximate values
Tj+1/2 = T(T;41/2) of the shear stress.

Based on these ideas, let us introduce the following approximations of the first derivative
of 7 and of u:

dT Tj+1/2 — Tj—1/2 du Uj+1 — Uy
%(xj) ~ % and %(x]‘«rl/Z) ~ JT] ] (21)

21 / 247



Step 2 above is accomplished by enforcing the approximate form of the equilibrium
equation at the nodes with integer indices:

Ti+1/2 — Tj-1/2

- +f=0, j=1,...,N, (22)

as well as the approximate form of the constitutive equation at the nodes with
semi-integer indices:

Uj4+1 — U4 .
Tj+1/2 :Nj+1/2%7 j=0,...,N, (23)

where we have set f; = f(z;) and pjt11/2 = pu(j41/2)

(We assume throughout this Section that f and p are continuous functions in [0, L]).



Substituting (23) into (22), we obtain the equations

1 Ujp1 — Uj Uj — Uj—1 .
_E(Mj+1/2%_ﬂj—l/2%):fj7 j=1...,N,

which can be written as

1 .
2 (_Mj—l/QUjfl + (Hj—1/2 + Mj+1/2)uj — Mj+1/QUj+1) =fi, j=1...,N

(24)
Hence, we obtain again a system of N linear equations in the IV internal unknowns w;.
We write this system in matrix form as

Au=f,

where A is the square tridiagonal symmetric matrix of order N whose elements are given
by

Hj—1/2 + 12 i k=7, with 1 <j <N,
1) —pjoaye if k=j—1, with 2<j<N,
YRR gy if k=j+1, with 1<j<N-—1, (25)
0 otherwise .

23 / 247



Further boundary conditions

To the equation

-4 (ufji;) —f (01,

we may associate the so-called Dirichlet boundary conditions
u(0)=go,  u(l)=gcr;

they are said to be non-homogeneous when the assigned values are # 0.

As an alternative, one of the so-called Neumann boundary conditions

du du

PO = w0, o WL =ur,

may be enforced at the corresponding endpoint of the interval; physically, any such

condition amounts to assigning the value of the shear stress (in the elastic model) or the
heat flux (in the thermal model).
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Non-homogeneous Dirichlet boundary conditions

Let us suppose that we have to enforce

u(0) = go .

In the first equation (relative to the first internal node x1)

1
%l (—p1j2u0 + (p1j2 + paj2)ur — psjzuz) = fi,

let us replace ug by the value go, and let us move the corresponding term to the
right-hand side

1 Hi/2
73 (/2 + pgp2)ur — pppuz) = fr+ hg 90

If we have to enforce

u(L) =gr ,
we manipulate in a similar manner the last equation (relative to the last internal node
zn), and we get

1

n
h2 (—pNn—1/2un—1+ (Un—1/2 + Pnt1/2)un ) = [N + N+1/2l

h2

In conclusion, it is enough to modify the first and last entry of the right-hand side of
the algebraic system.
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Neumann boundary conditions

Let us suppose that we have to enforce

du
—(L) = .
de( ) =L
Since the value of u in xny41 = L is not prescribed, we have an additional unknown,
UN+1 = u(wN+1) = u(L)
Thus, we need to add a new equation, at x = xn4+1 = L. Assuming for simplicity that
is constant, let us add

UN — 2UN+1 + UN+2
- e =f(L);
however, a further unknown u N2, associated with the faked node xn+2 = L + h outside
the interval [0, L], is introduced.

This unknown, though, is swiftly eliminated by imposing at the node xn 41 the
approximate Neumann condition given by the centred difference quotient, i.e.,

UN+2 — UN

TR

In such a way, the second-order accuracy of the discretization is preserved.
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From this equation, we get

2h
UN+4+2 = UN + ZZDL .

Substituting this value in the preceding equation and dividing by 2, we thus obtain the
(N + 1)-th equation of our algebraic system:

o

ﬁ(*’uN +'LLN+1) - %f(L) + %d}L :fN+1 .

Hence, the matrix of the algebraic system
Au=f
obtained in this way, now of order N + 1, is given by

A:%tridiag[—l 2 —1; —1 1],

whereas the value ¥, of the Neumann condition appears in the last entry of the vector f.
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Gerschgorin’'s Theorem

Gerschgorin’s Theorem provides some easy-to-check criteria in order to localize the
eigenvalues of a square matrix in the complex plane.

Given a real square matrix A of order n, let us define the Gerschgorin circles
n
Ci={z€C : [z—au| <mi = Z laij| }, 1=1,2,...,n. (26)
=1,
Note that the circle C; has center on the real axis at the point of abscissa ai;, and radius
equal to the sum of the moduli of the elements belonging to the row ¢, outside the

diagonal.
Cs
Cy Cs
o | O
Cs
6 18
e
4

c w
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Let A be a real square matrix of order n and C;, i = 1,2,...,n, its Gerschgorin discs.
Then:

@ ecach eigenvaue X di A belongs to the union C = J;_, C; of all Gerschgorin discs.

@ If the union C' = | J{', Ci, of m Gerschgorin discs is disjoint from the union of the
remaining n — m discs (we say C' is a connected component of C), then exactly m
eigenvalues of A belong in C'.

© Let A be irreducible, meaning there exists no row or column permutation making A
block diagonal, i.e., of the form

. A11 O
B=(o' i)
with A1, Ass square of order < n. If one eigenvalue X\ lies on the boundary of C,
then \ belongs to every Gerschgorin disc of A.
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Since the eigenvalues of the transpose matrix AT coincide with those of A, we can apply
Gerschgorin's theorem to the transpose, and locate eigenvalues with more accuracy; the
centres of the discs are unchanged, whereas radia are the sums of the absolute values of
off-diagonal column elements of A.

If A is symmetric its eigenvalues are real, so it is enough to analyse Gerschgorin intervals
C, given by the intersections of the discs C'; with the real axis.

30 / 247



Let A be the irreducible, symmetric 6 X 6 matrix

3 0 1 0 0 -1

0 -2 0 1 1 0

1 0 -1 0 0 0

A= 0 1 0 5 0 3
0 1 0 0 6 —3

=1 0 0 3 -3 18

Gershgorin's intervals are

Ci={zeR : |z-3/<2} =1, ],
Co={zeR : |[z4+2/<2}=[-
Cs={zeR : |z+1/ <1} =[-2 ]
Ci={zeR: |z-5<4}=[9],
Cs={zeR : |[z—6]<4}=[2,10],
Cs={r€R : |[z—18/ <7} =[11,25],

whereas Gershgorin's disks have been shown three slides back.

v
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Example (continued)

The connected components are
Ci=CUCs=[-4,0, Co=CuC,UCs=][1,10, C5=Ces=][11,25].

By Gershgorin's theorem two eigenvalues of A belong to the open interval (—4,0), three
are in the open interval (1,10) and one in the open interval (11,25). The eigenvalues of
A, computed in MATLAB, read:

A1 = —2.2590...
A2 = —1.2393...
A3 = 3.1028...
AN = 4.1440...
As = 5.8899...
Xe = 19.3616...
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Properties of the finite difference matrix

Let us go back to the matrix A obtained from the discretization of the elastic string
problem by finite differences (defined in (25)).

The matrix A is symmetric and positive definite, hence in particular it is non-singular.

Let us remember that a symmetric matrix A is positive-definite if
T Ax >0 for any vector ¢ # 0,

or, equivalently, if
all the eigenvalues of A are > 0.
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The theorem is a consequence of Gerschgorin's theorem.

Let us check this statement in the particular case in which p is constant, i.e., when
A= %tridiag -1 2 —-1].
The Gerschgorin intervals A are
61261\7:%{&061& Dl — 2| gl}:%[l,i&] ,

@:%{xER : |x72|§2}:%[0,4], j=2,...,N—1.

Hence all the eigenvalues of A are strictly positive: in fact, every Gerschgorin interval is
contained in the positive z-semiaxis, and the origin does not belong to all Gerschgorin
intervals; therefore 0 cannot be an eigenvalue.
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Wrap-up on Linear Algebra

Let ¢ = (xs)1<i<n € R™ be a column vector with n real entries. If p is an arbitrary real
number > 1, one calls p-norm of x the quantity

n 1/p
lllp = (Z Izi|p> ~
i=1

Especially important are the norms
" " 1/2
el =3 ki el = (Z |w> C Nl = max fal
1= 1=

Let then A = (asj)1<ij<n € R"™™ be a square matrix of size n. To each vector norm
|lz|| is associated a matrix norm || A||, defined by
|Az| _

Al = max = max [|Az|.
wekn 20 [[@f] | wern |ol=1

From the definition, it easily follows
|Az| < || Al ||z for all x € R™ |

and
|AB| < [|A[[|B], M =1.
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In particular, one has
n
T
|- Allee = max Z; lai;| = A |1
i=

and
[All2 = v/p(ATA),

where p(B) denotes the spectral radius of a matrix B, namely

p(B) = max{|A| : \is an eigenvalue of B} .

If A is a symmetric matrix (hence, it has all real eigenvalues), it holds

||[All2 = max{|\| : Ais an eigenvalue of A} .

If, in addition, A is positive definite, with eigenvalues that satisfy
O0<A <A << A,
then, setting Amin = A1 and Amax = Ay, we have
[All2 = Amax -

Recalling that
Aw= ) w < A 'w=)'w,

we immediately obtain
1

)\min ’

A= 2 =



The condition number of a matrix

Let A be a nonsingular, square matrix. The number
-1
cond,(A) = [|All, [A™" |l

is called the condition number of A (with respect to the p-norm).
We always have
condp,(A) > 1.

A matrix A is called well-conditioned if cond,(A) ~ 1, ill-conditioned if cond,(A) >> 1.

Let b € R™ be a non-zero vector (representing the “input data” of a certain problem, or
the “initial state” of a physical system), and let € R™ be the solution to the linear
system

Ax =b,
(representing the “solution” to the problem, or the “exit state” of the physical system).
Now suppose to know not b, but rather only an approximation b of it, by a series of
reasons (measuring errors, errors in numerical representation, et c.); correspondingly, we
have a solution & defined by

Az =b;

we can reasonably expect & to approximate @. Then, one has:

b—b
cond,(A) w .
p
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For a positive-definite, symmetric matrix, the condition number in Euclidean norm is

given by
Amax

)\min '
Hence, a positive-definite, symmetric matrix is ill-conditioned whenever the orders of
magnitude of its eigenvalues are considerably different.

condz(A) =

Example

A typical example of (positive-definite, symmetric) matrices that are very ill-conditioned
is provided by the class of Hilbert matrices H, (n > 1), whose entries are
sy = ; 1<2,7<n
”_7;“(‘]'_17 S AS )
(such matrices are defined by the MATLAB instruction hilb).
The condition numbers conds(H,,) (estimated by the MATLAB command cond) grow
exponentially fast as n grows!
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Going back to the matrix A of the finite difference discretization, if the physical
coefficient p is constant one can explicitly compute its eigenvalues, that we denote by

At <Anz <o <App << ANo1 < ApN

/\h,p:i—g<lfcos< %)), p=1,...,N.

Recalling that 1 — cost ~ %tQ ast — 0, and that cost — —1 as t — m, we get the
asymptotic behaviour of the minimum aigenvalue Ay 1 and maximum eigenvalue A\ N
when h tends 0 (or, equivalently, when N tends to +o0):

indeed, one has

2

™
)\h,l'\’)\lizﬂﬁ7 Ah’Nwﬁ‘

In particular, we derive that the condition number of A in Euclidean norm satisfies

. Ah,N N 4I72 B2

condz(A) = o ;

Hence, the matrix becomes more and more ill-conditioned as the discretisation step h
decreases.
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Consistency, stability, convergence

Hereafter, let us measure the magnitude of a vector using the mean-square norm

[lla.m = —=[v]l2 =
2,m \/N 2

or the maximum norm ||v]]cc-
The vector u that solves the algebraic system generated by the finite difference method
satisfies

Au—f=0.
Let u® = (u(z;))1<j<n € RY be the vector whose entries are the values of the exact
solution of the equation at the inner nodes. In general, the residual vector, or truncation
error,

Au—f=r
does not vanish. However, since we have used second order numerical differentiation
formulas, one can prove that

< Bp2
lI]l2, Rl max

di‘(x) _ 1o ma
dxt 12 €[0,L]

df
@)
Hence, we deduce that

r—0 ash—0.

Such a property is termed consistency of the numerical method.
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By substracting equations Au®— f=r and Au— f =0, we get

Au—u)=r, ie., uw—u=A"r,
whence
[u® = wllzm < AT 2]lrl2m -
But
A2 = L < cl (independent of h) ;
A1 A1

s

such an inequality is referred to as the stability of the numerical scheme.

We conclude that )

! ()

lu — ull2,m < Ch® max Tz

x€[0,L]

This shows that the numerical method is convergent.

More precisely, if the data f is smooth enough, the mean-square norm of the difference
between the exact and numerical solutions at the internal nodes tends to 0 as h — 0; in
addition, convergence is second-order, namely quadratic in h.

A similar result holds for the maximum norm ||u® — u|oc-
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DISCRETIZATION BY FINITE ELEMENTS

Finite element methods are based on an integral formulation, or variational formulation,
of the boundary-value problem to be approximated.

Consider the elastic string problem (12), in which we assume the density of force f to be
a piecewise-continuous function on [0, L].

Let us introduce a generic function v, defined on [0, L], representing the string’s generic
displacement from the reference position under external forces.

Using the physics’ language, we shall say v is an ammissible displacement; in
mathematical language, we will call v a shape function.

It is absolutely natural for v to be a continuous map (the elastic string should not break),
and to vanishes at the interval’s endpoints (as the string is fixed there).

Let us multiply the differential equation by an admissible displacement v (called test
function, in this situation) and then integrate over [0, L]; this gives

_/Odex(d)vdx_/ fode . (27)
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Now we can integrate by parts the left hand side, thus supposing v is piecewiese
differentiable (at least), with continuous derivative. The equation becomes

L L L
du dv du
== = . 2
/0 w0 dx [dev}o /0 fvdx (28)
However, recalling that we had assumed v(0) = v(L) = 0, the boundary terms at x = 0
and x = L are actually zero.

Let us denote by V' the set of admissible displacements, i.e., let us define
V ={v:[0,L] = R | v is continuous on [0, L], piecewise differentiable

with continuous derivative, and such that v(0) = v(L) = 0} .

Note that the solution itself to our problem w is an admissible displacement (it describes
the string’s displacement exactly in correspondence to the load f), hence u € V; this
condition incorporates the vanishing of u at the endpoints.
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So, we can formulate problem (12) in the following integral manner:

u € V and satisfies

L L (29)
/ d—u@d / fvdzx forall veV.
0 Wiz dz 0

We shall call the above the variational, or weak, formulation of the elastic string
problem.

It translates in mathematical terms what in Mechanics is known as the Principle of
Virtual Work: the work of an external force under an admissible displacement (given by
the right-hand-side integral of (29)) equals the work of all elastic reactions of the
material (left-hand-side integral).

The differential formulation (12) and the variational one (29) are equivalent if the
problem’s data 1 and f (hence the solution u) are regular enough.

The integral formulation allows to treat more general situations
(a piecewiese-continuous elastic coefficient u, or a concentrated weight f).
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The set V of all admissible displacements is a vector space: if v1 and v2 are two
admissible displacements, then any linear combination of them, awvi 4+ Bv2 with arbitrary
a, B € R, will be an admissible displacement as well.

Furthermore, if both v1 and w2 satisfy the variational equation

L L
du dv
pn——dx d
/0 Wiz do /0 fodz,

then also av; + B2 will satisfy it automatically, due to the linearity of definite integrals
and derivatives.
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We can define a discretization method starting from the variational formulation (29), by
considering only a finite number of independent admissible displacements.

Their linear combinations will give rise to a vector space, that we denote by V}, and is a
subspace of V.

The space V}, is finite-dimensional: the admissible displacements of V4, called discrete

displacements, will be determined by a finite set of parameters, known as degrees of
freedom of the displacement.

We are thus led to consider the following discrete variational formulation:

up € Vi, and satisfies

) ) (30)
o T dx 0
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The finite element method represents a simple yet effective way to define spaces of
discrete displacements V}, to be employed in the discrete variational formulation just
defined.

Once more, we take N + 2 nodes z; in [0, L], satisfying
O=xo<21 < ... <Tj—1 <Tj <Tj41 < ... <.Z‘N<J}N+1=L;

in order to warrant the method a broader generality, we will assume the nodes are not
necessarily equidistant. These nodes define a partition of [0, L] into subintervals

I; =[zj-1,2z], j=1,...,N + 1, of length h; = 2; — x;_1; let also conveniently set
h = mjax hj.

The easiest choice for discrete displacements consists in looking at the admissible
displacements that, on each interval I;, are polynomials of degree 1 at most. So let us set

Vi ={vn €V [vpr; €Pyforj=1,...,N+1}, (31)
where P; denotes the set of polynomials on I; of degree less than or equal to 1.

This choice generates the so-called linear finite elements.
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0 Tj-1 T Tj+1 L

The discrete displacement vy, is uniquely, and comfortably, determined by its values

v; = vp(x;) at the internal nodes (j = 1,..., N). On each interval I, in fact, we can
write it as
Tj; — T T —Tj-1
up(z) = vj-1 + v; .
hj hj

Therefore we can indentify v;, with the column vector

T N
v = (v1,v2,...,un-1,vn) ER" .




Tj-2 Tjo1 ) Tjp1 Tiyo

This fact naturally leads to defining a basis in V},, which allows us to write discrete
displacement as a linear combination of the basis functions. We remind that every
v € RN can be expressed as

v =vie; +v2e2+ -+ Un_1€N—1 + UNEN , (32)

where e; = (0;x) is the column vector, in the canonical basis, whose components are all
0, except the j-th one, which equals 1.

The vector e; defines the discrete displacement ¢; € V}, that is 0 at all nodes except x;,
where is equals 1. Such a function is termed hat function, or tent function.
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The hat function ¢; is written as

T— X1 .
hij] |f T € IJ ,
pi(@) =TT e, (33)
hjt1
0 otherwise .

Thus, we can represent each v, € V}, as
N
() = 0191(x) + vap2(7) + -+ + vN—1oN-1 () + NN () = D vips(z) . (34)
j=1

The functions ¢;, j =1,..., N, form the so-called Lagrange basis in V},.
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Reduction to an algebraic system

Let us recall that the approximate solution u, € V), satisfies the discrete variational
equations

L L
duy, dvp,
2N e = for all Vi .
/0 udm I dz /0 fon dx orall vy, € Vj (35)

Choosing as vj, the basis functions ¢; one at a time, we immediately see that uj,
satisfies, in particular, the N equations

L L

duyp, dp; / .
—_— = i fi =1,...,N.

/0 b dx ) fpjdx or j ey (36)

This system is indeed equivalent to the system of infinitely many equations (35). In fact,
each such equation is a linear combination of the equations (36), due to the linearity of
definite integrals and derivatives.

Next, let us represent uy, in the Lagrange basis, as

N
Up = E Uk Pk
k=1

Substituting in (36), we get:
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/ <Zuk<p> e dx—/ fojdx for j=1,...,N.
0

Using once more the linearity of derivatives and definite integrals, we arrive at the system
of algebraic equations

N L
Zuk/ u%dﬁ / fpjdx for 5=1,...,N. (37)
k=1 0
Setting
a; —/L donde; g, f-—/Lf da (38)
Jk_oudx dr ) J_O P )

the system (37) is written as

Zaijk:fj for j=1,...,N.
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Repeating,

N
Zajkuk:fj forj:l,...,N.
k=1
It is convenient to write such a system in matrix form, as
Au=f, (39)

after setting

A=(ap) €RVY . w=(u)eRY,  f=(f;)eR".

The matrix A is referred to as the stiffness matrix.
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Computation of the stiffness matrix

Let us recall that

L N+1

doy, do; / dor dp;
TS —/— ——dx = = dx .
Gik /o Faw dz *° mZ:1 Im'udm dz

Thus, we note that
@ the matrix A is symmetric,

@ each entry of the matrix can be obtained by adding the contribution of each interval
of the partition.

A crucial observation is that the basis function ¢; vanishes identically outside the interval
[€j—1,2;41], that we call the support of ;. Hence, the product

dos d;

dr dx
vanishes identically if the supports [xx—1,Zr+1] and [z;—1,z;j+1] do not intersect, i.e., if
|7 — k| >2.
If |7 — k| = 2, instead, the supports meet at one point only, yet the product is still 0 on
each I,,.
In either case, i.e. for |j — k| > 2, the entry a;i is zero.
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Now let us suppose k = j — 1. The functions ¢;_1 and ¢; have supports intersecting in
[zj—1,2,] = I;; the product of their derivatives is therefore null outside that interval, so

dpj—1 dp;
R 2= 55 4
a1 /Ij Fae dz

On I basis functions are linear, so their derivatives are constant; to be precise, recalling
that

T—Tj_1 .
Tjj ifvel;,
SOj(x): i m ifmGIjJrl,
hjt1
0 otherwise ,
we have
dejr 1 de; 1
dx hj’ dx hj;’
hence,
1/ h;j 1/ 1 _
Gjj-1=——% pde =—— | — pdr | = ——pn-1/2 ,
7 n2 i, n? (hj i hy Y

56 / 247



where

_ 1

Hj—1/2 = w pdx

iJi

denotes the mean value over I; of the elastic coefficient p. Often this number cannot be
computed exactly, rather we can approximate it, for instance, by the coefficient’s value
Mj—1/2 = p(x;_1/2) at the interval's middle point z;_ /2 = (z;-1 + z;)/2.
In conclusion, we set

1
aj,j—1 = _?Nj—l/Q :
J

At last, let us consider the diagonal entry a;;. We have

doj\* doj \*
- () ] () o
I dx I dx
with
doj _ 1 ot dej _ L o1
dz 7 dr ~ hjna AR

Hence, possibly with the same approximation of the elastic coefficient as above, we get

1 1
aj; = Ej“j‘w + Ej+1/‘j+1/2 :
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To sum up, the stiffness matrix is symmetric and tridiagonal, with entries:

Hj—1/2 + Hit1/2

if k=3,
hy hjta !
_Hi-1y2 if k=j—1,
ajkx = ,u-hj (40)
_ itz if k=j+1,
hjt1
0 otherwise .

In the particular case where p is constant and the mesh is equally spaced (i.e., h; = h for
all §), one has
2 if k=j,

ajk = L —1

T if k=j—1lor k=541,
0 otherwise

namely,

A:%tridiag[—l 2 —1].
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Computation of the forcing term

We have
fi= [ sesdos [ poiaa.
I; Ij1

For a generic force density we cannot calculate the integrals exactly; each one must
therefore be approximated by a numerical integration formula. Using the trapezoidal rule

[ o= (g(@ +90) "5

(which is exact if g is linear in [a,b]) and recalling the ¢; vanishes at z;_1 and x;41, and
equals 1 at x;, we obtain the approximate value

h; h;
[ resdo=p@) . [ ferde= gt
1 Ii+1
Thus, in the actual computations we set
hj + h;
Ji = flay) (41)
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It is interesting to compare the structure of the algebraic system obtained by the finite
difference discretisation,
ADFDF _ gDF
- )
with that of the system obtained by the finite element discretisation,

AEFuEF _ fEF

Each entry of either the matrix AZF or the source fZ¥ is of the order of h times the
corresponding entry of APF or fPF where h is the local discretisation spacing.
Dimensionally, this is absolutely consistent if we recall that the variational formulation of
the elastic string problem, generating the finite element discretisation, arises by
integrating over the spatial interval the differential formulation, at the base of the
discretisation by finite differences.

For equidistant subdivisions of [0, L] (h constant) and source terms computed via the
trapezoidal rule, we even have

AEF _ hADF and fEF _ thF ,

whence
EF DF
ul =u .

Thus, the two methods provide the same approximation for the displacement w.
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Properties of the finite element discretization

@ The matrix A is symmetric and positive definite (again by Gerschgorin Theorem).

@ The condition number of A satisfies:

Mimin ~ ¢h ), Apmax ~ch™' = condz(A) = A o p=2

h,min

@ The error between the exact solution 1 and the discrete solution u, satifies:

d*u
_ < Ch? - .
g o)~ )] < OO s, 1230

61 / 247



Non-homogeneous Dirichlet boundary conditions

Let us assume that we want to satisfy
w(0) =go, uw(l)=gr.

Two new basis functions are needed, i.e., po associated with node o = 0 and N1
associated with node xn11 = L.

The discrete solution uy, is now expressed as
N

un(x) = gopo(2)+)_ urpr(@)+gron+1(2)
k=1

namely uy, € Vi,(g0, 91)
(space of discrete admissible displacemets) b S

The discrete variational formulation is now:

un € Vi(go, gr) and satisfies

L L
/ u%% dr = / fop dz for all vy, € V4,(0,0) .
0 0 (space of discrete test displacements)
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The first equation becomes

hi+h
ai0go + a11u1 + aiguz = f(ml)%
with dion d
Yo ap1 H1/2
= —_— T dr ~ — .
aio I Faz dz & hy
Hence,

Hij2 | H3/2 M2 hi+ha  pij2
<h1 + hy )Ul hy U2—f($1)72 + Iy 0

In an analogous manner we enforce the condition in x = L.

In conclusion, for finite elements too, it is enough to modify the first and last entries of
the right-hand side.
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Neumann boundary conditions

Let us assume that we have to enforce
du

0)=0 —(L) = .
w0)=0,  pHL) =y
Now, any admissible displacement v is required to vanish only at x = 0:

V ={v:[0,L] = R | v is continuous on [0, L], piecewise differentiable

with continuous derivative, and such that v(0) = 0},
whereas the discrete admissible displacements
Vi=A{vn €V [vpr; €Pyfor j=1,...,N+1}
are generated by the basis functions

()01(25), s PN and PN+1

N
va(@) = Y 005 (@) Fonr1on1(x) -
j=1
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The variational formulation gets modified: indeed, starting from

L L L
du d d
/ —u—vd —uv :/ fvdx foranyv eV,
0 Wiz do Hix o 0
we now use the Dirichlet condition v(0) = 0 and we enforce the Neumann boundary
condition at z = L, to get

du L du d’u
au =Ny — O _ .
[’“devh p (L)o(L) = e (0)0(0) = yru(L)
Hence,
u € V and satisfies
L L
/0 3Z jz - /0 fodz + ¢ro(L) forall veV,
whereas

up € Vi and satisfies

L L
/O p%% da::/o fondz + Pron (L) forall vy, € Vi .
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The Neumann condition influences only the last equation of the algebraic system
Au = f, whose size is now N + 1.

The entries a;, of A are defined as for the case of Dirichlet boundary conditions, except
for the element an41,n+1, whose value is

d 2 1
AN+1,N+1 = / 1% (%) dzx = hi,LLNJrl/Q )
INt1 € N+1

since the last basis function, @41, has support only on the interval In4.

Similarly, for the last entry fx41 of the right-hand side f, we have

L
/ fontrde = / fontrdr =~ f(zni1) hz\;+1 (by the trapezoidal rule) ,
0 In41

hence, in conclusion, we set

hni1
2

v = f(L) + YL
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An elastic model with restoring

Let us now consider a slightly more complicated model of elastic string. To be precise, we
shall assume that on the string acts, in addition to the volume density of force f, also a
(density of) restoring force 7 proportional to the displacement u and oppositely oriented:

r=—-yu,
with v > 0 being the proportionality factor.

The mathematical model becomes

d—T+f77u:0 in (0,L),
dz d
T:MCTZ in (0,L),

u(0) =u(L)=0,

*% (/L%) +~yu=f in(0,L),
u(0) =u(L)=0.
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The problem'’s discretisation by finite differences or finite elements still leads to an

algebraic system like
Au=f,

where now the stiffness matrix A can be written as sum of two matrices,
A=AMW 1AM
)

the former (already known) accounting for the shear effects, the latter being a
consequence of elastic restoring.

o Discretization by finite differences
Equations now become

1
n2 (*.U'jfl/Zuj—l + (pj—1y2 + pjp1/2)uj — #j+1/2uj+1) + viu; = fj,

where we have set v; = v(x;).

Hence,
A = diag ((v;)1<j<n) -
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o Discretization by finite elements
The discrete variational formulation now becomes

up € Vi and satisfies

L duh dvh L
/0 (,u%% + ﬁ/uhvh) dx :/0 fon dx for all v, € Vi

after introducing the Lagrange basis, we obtain from it the equations

L duhdgaj L .
; de%+')/U)1@j dx = ; fojdr for j=1,...,N,

L 4oy dp; L L
E U (/ p——]d:rJr/ vpk.gojd:p):/ fojdx for 5=1,...,N.
— o dxr dx 0

0

L
A — B — {bjr1<jk<n with bj :/ Yerp; dz -
0
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The matrix B is tridiagonal, symmetric and positive semi-definite. Precisely, one has

%(7,1—1/2}% +’Yj+1/2hj+1) if k=3,

b é')/j_l/ghj If k :j -1 5

jk = . .
Y4172l if k=j+1,
0 otherwise ,

with L 1
Vi—1j2 ~ h—/ y(z) dzx , Vit+1/2 ~ r/ y(z)dw .
3 JI; G+ JI4

In the particular case in which  is constant on [0, L] and the partition of the interval is
equally spaced with step h, the previous expression takes the simplified form

2 ifk=y,
bjr=7hg & f k=j+1,
0 otherwise ,

i.e., one has
B = vyhtridiag [% 2 é] .
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