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CONSERVATION LAWS - INTRODUCTION TO FINITE VOLUMES

Many laws in Physics are stated under the form of conservation law, namely

ou
ou .F =
8t+v 0,

where u = u(x,t) is a scalar unknown defined, for ¢ > 0, in a domain  C R? and on its
boundary ' = 9Q, F = F(u, x,t) is a vector-valued function in R?, depending upon u
and possibly upon @ and ¢, which is termed flux of w (at the point @ and at time t); the
symbol V indicates the divergence operator, taken with respect to the spatial variables
Zyj.

Example: The convection-diffusion equation

%Jra-VufyAu:O
is a conservation law if V-a =0 in Q at any time; its flux is given by
F=F(u,z,t) = a(z,t)u — vVu .
Indeed,
V-F=V-(au) —vV-Vu=(V-a)ut+a-Vu—-vAu=a-Vu—vAu.
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Conservation property

Let us choose an arbitrary region V contained in €2, whose boundary 0V is smooth
enough so that the Divergence Theorem holds in V.

Integrating the equation on V and applying this theorem, we get

ou d
= g de = — d -Fd
0 /<8t+v )m dt/vum—i-/vv T
d/uda:Jr/ F-nd
dt 0 v

where n denotes the unit vector normal to 9V, pointing outward V.

The last integral represents the flux of u across the boundary of V. Integrating over a
time interval [t',¢"] and recalling that f:, 22 dt = p(t") — p(t'), we have

t//
/u(w,t")dw:/u(w,t/)dm—/ / F-ndydt.
v v v Jov

This shows that if the flux of u across V vanishes, then the quantity fv u(x, t) de is
conserved. If not, its variation equals the balance between incoming flux and outcoming
flux across OV.
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Idea of the Finite Volume Method

Let us fix a decomposition of the spatial domain € in volumes, o cells V;,
having finite measure |V;|, which intersect only through their boundaries 9V;.
Next, let us fix a time step At > 0, and the time instants ¢, = nAt, n =0, 1, ...

Let us write the previous conservation property in the cell V; and in the time interval
[tny tn+1]:

tn41
/ u(@, thtr) de = / u(x, tn) de — / / F-njdydt.
V; V; tn av;

J

Denoting by 0V;.¢ = 0V; N 0V, the common interface between cells V; and V;, we have

tn+1
/ u(@, thtr) de = / u(x, t,) de — / / F-njdydt.
V; V; aV;

J [0V ¢|>0

Let us introduce the cell averages of the exact solution, as well as the average flux on
each cell interface:

1 1 ntto ]
U":—/ u(zx, t,) de F-"e:—/ — F-n; dydt.
! Vil Vj ’ ” At tn |0V).¢ Vj g ’
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Then, the previous relation becomes

ViU = (V| UF = At Y |0Vl Ffle
‘9Vj7[‘>0

Dividing by |V;| and setting
|0V ¢]
Aje = At——"—,
’ [Vl

we obtain the relation

n+1l __ n . n
Uu, " =Uj — E Aje By
|6erg|>0

Such a formula suggests to define a numerical scheme, which updates the values of the
cell averages from one time instant to the next one, by means of suitably defined
numerical fluxes, each of them should be easily computable using only the information on
the averages in the nearby cells.
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@ To be precise, let
uj ~Uj'

be a discrete cell average, namely the approximation of the exact cell average of the
cell V; at the time t,,, defined by the numerical scheme.

o Next, let
f;,LZ = f(u?7u?) =~ F]T,Ll
be a numerical flux, namely the approximation of the average flux between two
contiguous cells V; e V;, defined in terms of the corresponding discrete cell averages.

The numerical flux is determined by the choice of the function

fu,v) = f(u,v;a,n)

which appears in the previous formula.

@ Then, the corresponding finite-volume numerical scheme is given by:

n+l _ n X n
with=ui = Y NS
‘BVj’g‘>0
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The model equation in one dimension

The simplest example of conservation law is the transport equation

Oou 0 ou Ou .
aJr%(au)_aJra%_O, with constant @ # 0 .

The flux is given by F(u) = au.
The equation states that u is constant on the characteristic lines, i.e., the straight lines
in the plane (z,t) defined by the equation

dx

=a;

I
they are the lines of equation = = x(t) = at + b with constant b.
Indeed, the general solution has the form

u(z,t) = g(x — at)

where g : R — R is an arbitrary (differentiable) function.
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x —at T

In particular, the initial-vaalue problem

ou ou
5y tag =0, TER >0,
u(z,0) =uo(z), z€R,

has the unique solution

u(z,t) = uo(z — at) , zER, t>0.
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Finite volume schemes in one dimension

Let us introduce a space discretization step Az > 0 and the equally spaced nodes
z; = jAz, j € Z. The intermediate points ;41,2 = (j + 5)Az define the cells
Vj = [xj—1/2, T 41/2), having the nodes x; as centers.

The conservation relation in the cell V; and in the time interval [ty,t,41] takes the form

Tjt1/2 ZTjt1/2
/ u(x, tpt1)de = / u(x, ty) dx

Tj—1/2 Tj—1/2

- (/:,H F(u(zjt1/2,t)) dt — /tthrl F(u(xj_l/Q,t))dt> '

n

Setting
" 1 Tj+1/2 n 1 [t
Uj = E/ u(z, tn) dv e J+1/2 = E/t F(u(zji1/2,1))dt,

Tj_1/2 n

the previous relation becomes

Az UM = Az U — (At F}yyp — ALF] )
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If we introduce the constant (having the dimension of a velocity ™ )

At
A—Fx>0,

we obtain
Ut = U = MFfrye — Filaga) -

J

A finite-volume discretization scheme is thus written as
+1
u; =uj — A(f?+1/2 - f;i1/2) ,
with numerical fluxes
f?+1/2 = f(uj,uj1)
where f(u,v) is a suitable function depending upon two real variables u e v (and upon a,
too).

In order to guarantee the consistency of the discretization scheme with respect to the
exact equation, the function f is required to satisfy the property

fu,u) = au for any value of u € R .

In the sequel, we consider some relevant examples of numerical fluxes, and the
corresponding finite-volume schemes.
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The forward/centered Euler method

The numerical flux f(u,v) is given by

a
Jo(u,0) = 5 (u+)
and the resulting scheme is
U?H =u; — =Aa(ujyr — uj_q)
It can be equivalently written as
+1
ui™ —ug 4 au?ﬂ —uj —0
At 2Azx ’

thus, it corresponds to a centered approximation of the spatial derivative.

This method gives very poor results; hence, it is never used in practice!
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The Lax-Friedrichs method

The numerical flux f(u,v) is given by

fue(uy) = (utv) + 5o (u =)

and the resulting scheme is

Wttt = 1

n n 1 n n
j 2(“j+1 +uj_1) — 5)‘a(uj+l —uj_1) .

It can be equivalently written as

n+1 n n n n n n
U, — Uy Us — U; 1 u; —2u” +u;

J +1 1 +1 1
J a J J Q”I' J J J

At 2Ax T2 Ax?

=0,

thus, it corresponds to adding an artificial diffusion term (or numerical diffusion term)
proportional to Az (and independent of a).
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The Upwind method

The numerical flux f(u,v) is given by

au if a>0,
av if a<O0.

_a |al _
fu(u,v) = §(U+U)+7(U—U) = {

and the resulting scheme is

n n n H
uj —Aa(uj —uj_q) if a>0,
n+1
u;t =

uj —Aa(ujp —uy) if a<0.

It can be equivalently written as

Wttt — ul —ul
— J+aJA“:o if >0,
T
or o
u” —u” ul s —u®
j J 41 i .
a =0 if a<0.
At * Az

Thus, the spatial derivative is discretized by a backward incremental quotient if a > 0,
by a forward incremental quotient if a < 0.
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Recalling that information propagates from left to right if a > 0 and from right to left if
a < 0, we can say that the scheme defines the new values of the cell averages coherently
with the propagation of information.

Equivalently, the Upwind scheme can be written as

n+1 n n
uit —uy ta fAmMuH'l —2uf +uj_q
At 2Ax 2 Az?

hence, again it corresponds to adding a numerical diffusion term proportional to Az, but
now depending upon a.

n n
Uj+1 — Uj—1

=0,

The method is first order accurate both in space and in time, i.e,

discretization error ~ c1 Az + c2 At .
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The Lax-Wendroff method

The numerical flux f(u,v) is given by
a 1 2
frw (u,v) = §(u +v)+ 5)\& (u—v)

and the resulting scheme is

1 1
ittt = — §Aa(u?+1 —uj_1)+ §(Aa)2(u?+1 —2ui 4+ uj_q).

It can be equivalently written as
utt — u s — a2 ut g —2u" 4 U
j Iy gttt =l _ Ag a Uit J i—1
At 2Ax 2 Ax?

(the numerical diffusion term now depends upon both a and ).

=0

The method is second order accurate both in space and in time, i.e,

discretization error ~ ¢1(Az)? + ca(At)? .
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The Courant number and the CFL stability condition

An important quantity in the study of the numerical stability of the previous schemes is
given by the Courant number
At
Cour = |a|X = |a|— .
alA = Jal 5

Indeed, the numerical solution is asymptotically stable (i.e., the numerical cell averages
all remain bounded as the number of time steps increases) if and only if the following
CFL (Courant, Friedrichs e Lewy) condition is fulfilled:

Cour<1, namely, At < —

This condition guarantees that the exact solution at time ¢,,41 in the cell V; depends
upon its values at time ¢, in the cells V;_1, V; e Vj41 only, as indeed it occurs for the
numerical cell averages.
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The case Cour =1

The case Cour = 1 deserves a particular attention.

@ The exact cell averages evolve according to the law

gt _ [USy if a0,
J Ury if a<0.

@ The Lax-Friedrichs, Upwind and Lax-Wendroff methods all give the same solution;
precisely, the numerical cell averages evolve according to the law

Wi wi_q if a>0,
J u;'l+1 if a<O0.

@ We conclude that the numerical cell averages coincide with the exact ones at each
time advancing step, provided they coincide at the initial time.
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