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CONSERVATION LAWS - INTRODUCTION TO FINITE VOLUMES

Many laws in Physics are stated under the form of conservation law, namely

@u
@t

+r · F = 0 ,

where u = u(x, t) is a scalar unknown defined, for t � 0, in a domain ⌦ ✓ Rd and on its
boundary � = @⌦, F = F(u,x, t) is a vector-valued function in Rd, depending upon u
and possibly upon x and t, which is termed flux of u (at the point x and at time t); the
symbol r indicates the divergence operator, taken with respect to the spatial variables
xj .

Example: The convection-di↵usion equation

@u
@t

+ a ·ru� ⌫�u = 0

is a conservation law if r · a = 0 in ⌦ at any time; its flux is given by

F = F(u,x, t) = a(x, t)u� ⌫ru .

Indeed,

r · F = r · (au)� ⌫r ·ru = (r · a)u+ a ·ru� ⌫�u = a ·ru� ⌫�u .
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Conservation property

Let us choose an arbitrary region V contained in ⌦, whose boundary @V is smooth
enough so that the Divergence Theorem holds in V.

Integrating the equation on V and applying this theorem, we get

0 =

Z

V

✓
@u
@t

+r · F
◆

dx =
d
dt

Z

V
u dx+

Z

V
r · F dx

=
d
dt

Z

V
u dx+

Z

@V
F · n d� ,

where n denotes the unit vector normal to @V, pointing outward V.

The last integral represents the flux of u across the boundary of V. Integrating over a

time interval [t0, t00] and recalling that
R t00

t0
d'
dt dt = '(t00)� '(t0), we have

Z

V
u(x, t00) dx =

Z

V
u(x, t0) dx�

Z t00

t0

Z

@V
F · n d� dt .

This shows that if the flux of u across V vanishes, then the quantity
R
V u(x, t) dx is

conserved. If not, its variation equals the balance between incoming flux and outcoming
flux across @V.
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Idea of the Finite Volume Method

Let us fix a decomposition of the spatial domain ⌦ in volumes, o cells Vj ,
having finite measure |Vj |, which intersect only through their boundaries @Vj .
Next, let us fix a time step �t > 0, and the time instants tn = n�t, n = 0, 1, ...

Let us write the previous conservation property in the cell Vj and in the time interval
[tn, tn+1]:

Z

Vj

u(x, tn+1) dx =

Z

Vj

u(x, tn) dx�
Z tn+1

tn

Z

@Vj

F · nj d� dt .

Denoting by @Vj,` = @Vj \ @V` the common interface between cells Vj and V`, we have

Z

Vj

u(x, tn+1) dx =

Z

Vj

u(x, tn) dx�
X

|@Vj,`|>0

Z tn+1

tn

Z

@Vj,`

F · nj d� dt .

Let us introduce the cell averages of the exact solution, as well as the average flux on
each cell interface:

Un
j =

1
|Vj |

Z

Vj

u(x, tn) dx , Fn
j,` =

1
�t

Z tn+1

tn

1
|@Vj,`|

Z

@Vj,`

F · nj d� dt .
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Then, the previous relation becomes

|Vj |Un+1
j = |Vj |Un

j ��t
X

|@Vj,`|>0

|@Vj,`|Fn
j,` .

Dividing by |Vj | and setting

�j,` = �t
|@Vj,`|
|Vj |

,

we obtain the relation

Un+1
j = Un

j �
X

|@Vj,`|>0

�j,` F
n
j,` .

Such a formula suggests to define a numerical scheme, which updates the values of the
cell averages from one time instant to the next one, by means of suitably defined
numerical fluxes; each of them should be easily computable using only the information on
the averages in the nearby cells.
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To be precise, let
un
j ' Un

j

be a discrete cell average, namely the approximation of the exact cell average of the
cell Vj at the time tn, defined by the numerical scheme.

Next, let
fn
j,` = f(un

j , u
n
` ) ' Fn

j,`

be a numerical flux, namely the approximation of the average flux between two
contiguous cells Vj e V`, defined in terms of the corresponding discrete cell averages.

The numerical flux is determined by the choice of the function

f(u, v) = f(u, v;a,n)

which appears in the previous formula.

Then, the corresponding finite-volume numerical scheme is given by:

un+1
j = un

j �
X

|@Vj,`|>0

�j,` f
n
j,` .
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The model equation in one dimension

The simplest example of conservation law is the transport equation

@u
@t

+
@
@x

(au) =
@u
@t

+ a
@u
@x

= 0 , with constant a 6= 0 .

The flux is given by F (u) = au.

The equation states that u is constant on the characteristic lines, i.e., the straight lines
in the plane (x, t) defined by the equation

dx
dt

= a ;

they are the lines of equation x = x(t) = at+ b with constant b.

Indeed, the general solution has the form

u(x, t) = g(x� at)

where g : R ! R is an arbitrary (di↵erentiable) function.

236 / 246



x

t

(x, t)

x� at

In particular, the initial-vaalue problem

@u
@t

+ a
@u
@x

= 0 , x 2 R, t > 0 ,

u(x, 0) = u0(x) , x 2 R ,

has the unique solution

u(x, t) = u0(x� at) , x 2 R, t � 0 .
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Finite volume schemes in one dimension

Let us introduce a space discretization step �x > 0 and the equally spaced nodes
xj = j�x, j 2 Z. The intermediate points xj+1/2 = (j + 1

2 )�x define the cells
Vj = [xj�1/2, xj+1/2], having the nodes xj as centers.

The conservation relation in the cell Vj and in the time interval [tn, tn+1] takes the form
Z xj+1/2

xj�1/2

u(x, tn+1) dx =

Z xj+1/2

xj�1/2

u(x, tn) dx

�
✓Z tn+1

tn

F (u(xj+1/2, t)) dt�
Z tn+1

tn

F (u(xj�1/2, t)) dt

◆
.

Setting

Un
j =

1
�x

Z xj+1/2

xj�1/2

u(x, tn) dx e Fn
j+1/2 =

1
�t

Z tn+1

tn

F (u(xj+1/2, t)) dt ,

the previous relation becomes

�xUn+1
j = �xUn

j � (�t Fn
j+1/2 ��t Fn

j�1/2) .
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If we introduce the constant (having the dimension of a velocity�1 )

� =
�t
�x

> 0 ,

we obtain
Un+1

j = Un
j � �(Fn

j+1/2 � Fn
j�1/2) .

A finite-volume discretization scheme is thus written as

un+1
j = un

j � �(fn
j+1/2 � fn

j�1/2) ,

with numerical fluxes
fn
j+1/2 = f(un

j , u
n
j+1) ,

where f(u, v) is a suitable function depending upon two real variables u e v (and upon a,
too).
In order to guarantee the consistency of the discretization scheme with respect to the
exact equation, the function f is required to satisfy the property

f(u, u) = au for any value of u 2 R .

In the sequel, we consider some relevant examples of numerical fluxes, and the
corresponding finite-volume schemes.
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The forward/centered Euler method

The numerical flux f(u, v) is given by

fE(u, v) =
a
2
(u+ v)

and the resulting scheme is

un+1
j = un

j � 1
2
�a(un

j+1 � un
j�1) .

It can be equivalently written as

un+1
j � un

j

�t
+ a

un
j+1 � un

j�1

2�x
= 0 ,

thus, it corresponds to a centered approximation of the spatial derivative.

This method gives very poor results; hence, it is never used in practice!
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The Lax-Friedrichs method

The numerical flux f(u, v) is given by

fLF (u, v) =
a
2
(u+ v) +

1
2�

(u� v)

and the resulting scheme is

un+1
j =

1
2
(un

j+1 + un
j�1)�

1
2
�a(un

j+1 � un
j�1) .

It can be equivalently written as

un+1
j � un

j

�t
+ a

un
j+1 � un

j�1

2�x
��x

1
2�

un
j+1 � 2un

j + un
j�1

�x2
= 0 ,

thus, it corresponds to adding an artificial di↵usion term (or numerical di↵usion term)
proportional to �x (and independent of a).
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The Upwind method

The numerical flux f(u, v) is given by

fU (u, v) =
a
2
(u+ v) +

|a|
2
(u� v) =

(
au if a > 0 ,

av if a < 0 .

and the resulting scheme is

un+1
j =

8
><

>:

un
j � �a(un

j � un
j�1) if a > 0 ,

un
j � �a(un

j+1 � un
j ) if a < 0 .

It can be equivalently written as

un+1
j � un

j

�t
+ a

un
j � un

j�1

�x
= 0 if a > 0 ,

or
un+1
j � un

j

�t
+ a

un
j+1 � un

j

�x
= 0 if a < 0 .

Thus, the spatial derivative is discretized by a backward incremental quotient if a > 0,
by a forward incremental quotient if a < 0.
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Recalling that information propagates from left to right if a > 0 and from right to left if
a < 0, we can say that the scheme defines the new values of the cell averages coherently
with the propagation of information.

Equivalently, the Upwind scheme can be written as

un+1
j � un

j

�t
+ a

un
j+1 � un

j�1

2�x
��x

|a|
2

un
j+1 � 2un

j + un
j�1

�x2
= 0 ,

hence, again it corresponds to adding a numerical di↵usion term proportional to �x, but
now depending upon a.

The method is first order accurate both in space and in time, i.e,

discretization error ⇠ c1�x+ c2�t .
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The Lax-Wendro↵ method

The numerical flux f(u, v) is given by

fLW (u, v) =
a
2
(u+ v) +

1
2
�a2(u� v)

and the resulting scheme is

un+1
j = un

j � 1
2
�a(un

j+1 � un
j�1) +

1
2
(�a)2(un

j+1 � 2un
j + un

j�1) .

It can be equivalently written as

un+1
j � un

j

�t
+ a

un
j+1 � un

j�1

2�x
��x

�a2

2

un
j+1 � 2un

j + un
j�1

�x2
= 0

(the numerical di↵usion term now depends upon both a and �).

The method is second order accurate both in space and in time, i.e,

discretization error ⇠ c1(�x)2 + c2(�t)2 .
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The Courant number and the CFL stability condition

An important quantity in the study of the numerical stability of the previous schemes is
given by the Courant number

Cour = |a|� = |a|�t
�x

.

Indeed, the numerical solution is asymptotically stable (i.e., the numerical cell averages
all remain bounded as the number of time steps increases) if and only if the following
CFL (Courant, Friedrichs e Lewy) condition is fulfilled:

Cour  1 , namely, �t  �x
|a| .

This condition guarantees that the exact solution at time tn+1 in the cell Vj depends
upon its values at time tn in the cells Vj�1, Vj e Vj+1 only, as indeed it occurs for the
numerical cell averages.
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The case Cour = 1

The case Cour = 1 deserves a particular attention.

The exact cell averages evolve according to the law

Un+1
j =

(
Un

j�1 if a > 0 ,

Un
j+1 if a < 0 .

The Lax-Friedrichs, Upwind and Lax-Wendro↵ methods all give the same solution;
precisely, the numerical cell averages evolve according to the law

un+1
j =

(
un
j�1 if a > 0 ,

un
j+1 if a < 0 .

We conclude that the numerical cell averages coincide with the exact ones at each
time advancing step, provided they coincide at the initial time.
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