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ITERATIVE METHODS FOR SOLVING LARGE LINEAR SYSTEMS

When dealing numerically with di↵erential models one is often lead to solve very large
linear systems with sparse matrices. We will write such a system as

Ax = b , (56)

where A is a square matrix of order n, non-singular and sparse, b the column vector of
sources and x the column vector of unknowns.

We will denote by x the vector that solves this system of equations.

For our purposes it is useful to introduce the notion of residual vector (residual) of
equation (56) relative to a vector x:

r(x) = b�Ax . (57)

Note
x solves (56) () r(x) = 0 .
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Solution methods

Direct methods: they lead to solving the system by a finite number of algebraic
operations (assuming ideally an exact arithmetic) through suitable matrix
transformations (factorizations)
Classical examples are the Gaussian elimination method, or the Cholesky method
for symmetric positive-definite matrices, which rely, respectively, on the following
factorizations:

PA = LU , A = CC
T .

Using a direct method might have a prohibitive cost, both in terms of memory
storage, given that the matrices L and U usually have much bigger number of
non-zero entries than A (a phenomenon called fill-in), and also in terms of number
of operations required to get to the solution.

Iterative methods: they generate, starting from a tentative vector x0, a sequence
{x

k
}k�0 that converges to x.

(Classical methods are Jacobi’s, Gauss-Seidel’s, relaxation methods, ...).
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Descent iterative methods

If A is a symmetric positive-definite matrix, then the solution x of the linear system

Ax = b

can be seen as the unique minimum point of the functional

J : Rn
! R, J(x) = 1

2x
T
Ax� x

T
b ,

i.e., one has precisely
J(x) = min

x2Rn
J(x) .

Then, the idea is building a sequence {x
k
}k�0 such that

J(x)  · · · < J(xk+1) < J(xk) < J(xk�1) < · · · < J(x0) ,

with
x = lim

k!1
x
k .

131 / 246



Properties of the functional J

Let x be any element in Rn and let �x denote an arbitrary incremento given to �x. Then,

J(x+ �x) = 1
2 (x+ �x)TA(x+ �x)� (x+ �x)Tb

= 1
2x

T
Ax� x

T
b + (Ax� b)T �x + 1

2�x
T
A�x

or, equivalently,

J(x+ �x) = J(x) � r(x)T �x + 1
2�x

T
A�x .

Comparing this to the Taylor expansion of the functional J in x for the increment �x

J(x+ �x) = J(x) + rJ(x)T �x + 1
2�x

T
HJ(x)�x+ · · · ,

we deduce that
rJ(x) = �r(x) and HJ(x) = A .

The absence of terms higher than degree two indicates that J is a quadratic functional
(an upper-concave parabola if n = 1, an elliptic paraboloid if n = 2, and so on).
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The relation
J(x+ �x) = J(x) � r(x)T �x + 1

2�x
T
A�x

with x = x yields, for any �x 6= 0,

J(x+ �x) = J(x) + 1
2�x

T
A�x > J(x) ,

since A is definite positive. This confirm the already anticipated property

J(x) = min
x2Rn

J(x) .
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Mechanical interpretation

Consider the algebraic system
Au = f

produced by the finite-element discretization of the elastic membrane problem. The
corresponding functional J : RN

! R is given by

J(v) = 1
2v

T
Av � vTf .

Let vh =
PN

j=1 vj'j 2 Vh be the discrete admissible displacement associated with the
vector v = (vj)1jN . Then, we have

vT
Av =

Z

⌦

µkrvhk
2 dx and vTf =

Z

⌦

f vh dx ,

hence,

J(v) = 1
2

Z

⌦

µkrvhk
2 dx�

Z

⌦

f vh dx = E(vh) ,

where we heve defined, on the space V of all admissible displacements, the functional

E : V ! R , E(v) = 1
2

Z

⌦

µkrvk2 dx�

Z

⌦

f v dx .

The latter represents the total energy of configuration v, given by the sum of the elastic
strain 1

2

R
⌦
µkrvk2 dx associated to the deformation with respect to the rest position,

and the potential energy �
R
⌦
f v dx relative to the external force.
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The minimum condition
J(u) = min

v2RN
J(v) ,

can be translated into
E(uh) = min

vh2Vh

E(vh) , (58)

It tells that the solution uh 2 Vh to the discrete variational problem is the configuration
that minimises the membrane’s total energy among all admissible discrete configurations.

In a similar fashion, one can prove that the solution u 2 V of the exact variational
problem is characterised by

E(u) = min
v2V

E(v) ,

which expresses the Minimum Principle of the Total Energy: in an equilibrium state
the membrane’s configuration minimises the total energy of the system.

This Principle is equivalent to the Principle of Virtual Work.
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Descent direction and descend stepsize

A descent method is defined by a recursive relation of the sort

x
k+1 = x

k + ↵k
p
k , k = 0, 1, 2, . . . ,

where the vector pk is the descent vector, whereas the scalar ↵k is the descent step
size.

A vector pk is an admissible descent vector if

@J
@pk

(xk) = rJ(xk)Tpk < 0 ,

that is, if the functional decreases as one moves very little along p
k. Setting

r
k = r(xk) = �rJ(xk), the previous relationship becomes

(rk)Tpk > 0 .
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Line-search

Once a descent vector pk has been fixed, the step size ↵k is uniquely determined by the
requirement that the functional J has the maximum decrease in that direction.
Setting

'(↵) = J(xk + ↵pk) ,

the step size ↵k will be such that

'(↵k) = min
↵2R

'(↵) .

We have

'(↵) = J(xk)� ↵(rk)Tpk +
1
2
↵2(pk)TAp

k ,

proving that '(↵) is a concave parabola, since (pk)TAp
k > 0.

Hence, the minumum point is characterized by the relation

'0(↵k) = 0 , which gives ↵k =
(rk)Tpk

(pk)TApk
.

The new residual is then computed as follows:

r
k+1 = b�Ax

k+1 = b�Ax
k
� ↵k

Ap
k = r

k
� ↵k

Ap
k .
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The gradient method

Recalling the admissibility condition (rk)Tpk > 0, a natural choice consists in choosing

p
k = r

k (= �rJ(xk)) ,

meaning we move in the direction of local steepest descent.

−1 0 1 2 3 4 5

−2

−1

0

1

2

3

4
xk

xk+1

xk+2

xk+3

rk

↵krk

rk+1

rk+2

139 / 246



The algorithm of the gradient goes like this:

x
0 arbitrary

r
0 = b�Ax

0

For k = 0, 1, . . . until convergence

z
k = Ar

k

↵k =
(rk)T rk

(rk)T zk

x
k+1 = x

k + ↵k
r
k

r
k+1 = r

k
� ↵k

z
k

Note that at each iteration we perform just one matrix-vector multiplication
(to compute z

k).
This is the most expensive part of the algorithm, the other steps being just operations on
vectors.
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The conjugate gradient method (CG-method)

A faster descent is obtained by choosing the new descent direction p
k+1 in the form

p
k+1 = r

k+1 + �pk

where � = �k+1 is determined so to satisfy

(pk)TAp
k+1 = 0 .

This means that two successive descent directions pk and p
k+1 are A-orthogonal

(or, said equivalently, A-conjugate).
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The conjugate gradient algorithm is as follows:

x
0 arbitrary

r
0 = b�Ax

0

p
0 = r

0

For k = 0, 1, . . . until convergence

z
k = Ap

k

↵k =
(rk)Tpk

(pk)T zk

x
k+1 = x

k + ↵k
p
k

r
k+1 = r

k
� ↵k

z
k

�k+1 =
(rk+1)T rk+1

(rk)T rk

p
k+1 = r

k+1 + �k+1
p
k

Note that, as before, the algorithm demands just one matrix-vector multiplication for
each iteration.
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Convergence - Rates of convergence

Let us measure the error xk
� x in the so-called energy norm kxkA =

p
xTAx.

One shows that for the gradient method one has

kx
k
� xkA 

✓
cond2(A)� 1
cond2(A) + 1

◆k

kx
0
� xkA , k � 0 ,

whereas for the conjugate gradient method one has

kx
k
� xkA  2

 p
cond2(A)� 1p
cond2(A) + 1

!k

kx
0
� xkA , k � 0 .

This implies that to obtain a relative error reduction proportional to some " > 0, i.e., to
obtain

kx
k
� xkA

kx0 � xkA
' "

the number k of needed iterations will satisfy

k '
1
2 | log "| cond2(A) (gradient method) ,

k '
1
2 | log "|

p
cond2(A) (conjugate gradient method) .
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Preconditioning

In order to furtherly reduce the number of iterations to achieve a given accuracy, a
popular strategy consists in applying the Conjugate Gradient method to the equivalent
algebraic system

P
�1

Ax = P
�1

b ,

where P is a so-called preconditioning matrix for A, namely it satisfies the conditions

cond2(P
�1

A) << cond2(A);

the entries of P are computable in a cheap way;

a matrix-product multiplication z = P
�1

y, or equivalently the solution of a linear
system

Pz = y ,

can be accomplished at a comparable cost to that of computing z = Ay.

By such a strategy, we obtain a preconditioned conjugate gradient method.

A technique that often leads to a rather e↵ective preconditioning matrix is to construct
an incomplete factorisation of A.
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Example

For a uniform triangulation of a square by means of 2N2 rectangular triangles with edge
length h = N�1, one has:

Method Iter vs condition number Iter vs h or N

Gradient O(cond2(A)) O(h�2) = O(N2)

Conjugate Gradient O(
p

cond2(A)) O(h�1) = O(N)

Preconditioned Conjugate Gradient O(
p

cond2(P�1A)) O(h�1/2) = O(
p
N)

Here, denoting by
A = CC

T

the Cholesky factorization of the symmetric positive-definite matrix A, one uses as a
preconditioner some

P = CCT , with C ' C .
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