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Time-advancing schemes

Consider the initial-value probem (also known as Cauchy problem)
8
<

:
u0 = F (u, t) , 0 < t  T ,

u(0) = u0 ,

(62)

for a system of n first-order di↵erential equations in n unknowns.

Here u : [0, T ] ! Rn is the vector, depending upon time in a di↵erentiable way, that
collects the unknowns, whereas F : Rn ⇥ [0, T ] ! Rn is a globally continuous function,
which is Lipschitz-continuous in the variable u uniformly in t, i.e., there exists a constant
L > 0 such that

kF (u, t)� F (v, t)k  L ku� vk , 8u,v 2 Rn
, 8t 2 [0, T ] .

For instance, this happens if
F (u, t) = Au+ b(t) ,

since
kF (u, t)� F (v, t)k = kA(u� v)k  kAk ku� vk .

Under the assumptions made on F , problem (62) admits one and only one solution for
any choice of the initial data u0 2 Rn.
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For the numerical approximation of such a solution, the most popular strategy consists in
resorting to a time-advancing scheme.

This means that one chooses (in various manners) K > 0 time instants tk, with

0 = t0 < t1 < · · · < tk < tk+1 < · · · < tK = T ;

for each of them, one recursively defines an approximation

uk ' u(tk)

of the exact solution; precisely, at the time tk+1, one defines uk+1 using the knowledge
of the approximations uj , j  k already computed at one or more previous time instants.

The conceptually simplest situation occurs when one advances with a constant time step
�t > 0 (in this case, one sets K = T/�t, assuming this ratio to be integer); the time
instants are then defined by

tk = k�t , for k = 0, 1, . . . ,K .
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Some time-advancing schemes - I

Explicit Euler scheme (EE): (explicit - one step - I order)

uk+1 = uk +�tF (uk
, tk) , k � 0 ;

motivated by the forward incremental quotient formula

u(tk+1)� u(tk)
�t

' u0(tk) = F (u(tk), tk) .
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Some time-advancing schemes - II

Implicit Euler scheme (IE): (implicit - one step - I order)

uk+1 = uk +�tF (uk+1
, tk+1) , k � 0 ;

motivated by the backward incremental quotient formula

u(tk+1)� u(tk)
�t

' u0(tk+1) = F (u(tk+1), tk+1)
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Some time-advancing schemes - III

Mid-point scheme (MP): (explicit - two steps - II order)

uk+1 = uk�1 + 2�tF (uk
, tk) , k � 1 ;

motivated by the centered incremental quotient formula

u(tk+1)� u(tk�1)
2�t

' u0(tk) = F (u(tk), tk)
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Some time-advancing schemes - IV

Trapezoidal (or Crank-Nicolson) scheme (CN): (implicit - one step - II order)

uk+1 = uk +�t

h
1
2F (uk

, tk) + 1
2F (uk+1

, tk+1)
i
, k � 0 .

motivated by a numerical quadrature formula applied to the relation

u(tk+1)� u(tk) =

Z tk+1

tk

u0(t) dt =

Z tk+1

tk

F (u(t), t) dt ,

obtained by integrating the identity u0(t) = F (u(t), t) on the interval [tk, tk+1]. The
integral on the right-hand side can be approximated by the trapezoidal formula

Z tk+1

tk

F (u(t), t) dt ' �t
⇥
1
2F (u(tk), tk) + 1

2F (u(tk+1), tk+1)
⇤
.
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Some time-advancing schemes - V

Runge-Kutta scheme RK3: (explicit - one-step - III order)

uk+1 = uk +�t
⇥
2
9F1 + 1

3F2 + 4
9F3

⇤
, k � 0 ,

where the addends on the right-hand side are recursively defined by

F1 = F (uk
, tk) ,

F2 = F (uk + 1
2�tF1, tk + 1

2�t) ,

F3 = F (uk + 3
4�tF2, tk + 3

4�t) .
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Some time-advancing schemes - VI

Runge-Kutta scheme RK4: (explicit - one-step - IV order)

uk+1 = uk +�t
⇥
1
6F1 + 1

3F2 + 1
3F3 + 1

6F4

⇤
, k � 0 ,

where the addends on the right-hand side are recursively defined by

F1 = F (uk
, tk) ,

F2 = F (uk + 1
2�tF1, tk + 1

2�t) ,

F3 = F (uk + 1
2�tF2, tk + 1

2�t) ,

F4 = F (uk +�tF3, tk +�t) .
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Some time-advancing schemes - VII

“Backward Di↵erence Formula” scheme BDF2: (implicit - two-steps - II order)

3
2u

k+1 � 2uk + 1
2u

k�1 = �tF (uk+1
, tk+1) , k � 1 ,

“Backward Di↵erence Formula” scheme BDF3: (implicit - three-steps - III order)

11
6 uk+1 � 3uk + 3

2u
k�1 � 1

3u
k�2 = �tF (uk+1

, tk+1) , k � 2 .
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One-step schemes - Consistency

An explicit one-step scheme has the general form

uk+1 = uk +�t�(uk
, tk,�t) , k � 0 ,

whereas an implicit one-step scheme has the general form

uk+1 = uk +�t (uk
,uk+1

, tk,�t) , k � 0 .

The connection with the di↵erential equation is given by the consistency condition:

Definition

A one-step scheme, defined by one of the previous formulas, is said to be consistent if
the condition

�(u, t, 0) = F (u, t) or  (u,u, t, 0) = F (u, t)

is satisfied for any u 2 Rn and t 2 [0, T ].

All the previously presented one-step schemes are consistent.
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One-step schemes - Order and convergence

Definition

A consistent one-step scheme is said to be of order p > 0 if, considering the solution u1

produced by the scheme at the first instant t1 = �t, one has

ku(t1)� u1k = O(�t
p+1) for �t ! 0 ,

for all solutions u that are (p+ 1)-times di↵erentiable at t = 0.

Theorem

If a one-step scheme is consistent and of order p, and if the exact solution u(t) is
(p+ 1)-times di↵erentiable in [0, T ], one has

max
1kK

ku(tk)� ukk  CL,T�t
p max
t2[0,T ]

����
d
p+1u
dtp+1

(t)

���� ,

where CL,T denotes a constant only depending on L, T and the numerical scheme.

The theorem guarantees the convergence of the scheme, i.e., the fact that the discrete
solution generated by the numerical scheme converges towards the exact solution as
�t ! 0; it also predicts the behaviour of the error as the time step decreases.
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THE ASYMPTOTIC STABILITY

In applications, it is important that a time-advancing scheme generates discrete solutions
uk which stay bounded as tk ! +1, whenever the exact solutions of the initial-value
problem (62) stay bounded as t ! +1.

A quite relevant situation occurs when the di↵erential system is

linear and autonomous, i.e., one has F (u, t) = F (u) = Au+ b with A square
matrix of order n and b 2 Rn independent of time, and

dissipative, i.e., A is diagonalizable with eigenvalues all having real part < 0.

In this case, whichever is the initial datum u0, the solution u(t) of the problem
8
<

:
u0 = Au+ b , t > 0 ,

u(0) = u0 ,

(63)

converges, as t ! +1, towards the steady state u1 2 Rn, solution of the linear system

Au1 + b = 0 ;

hence, in particular, it stays bounded as t ! +1.
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Indeed, applying the change of dependent variable v(t) = u(t)� u1 and setting
v0 = u0 � u1, one immediately checks that v is the solution of the homogeneous
Cauchy problem 8

<

:
v0 = Av , t > 0 ,

v(0) = v0 .

(64)

Let A = W⇤W�1 be the diagonalization of the matrix A, where ⇤ = diag (�1, . . . ,�n)
is the diagonal matrix collecting the eigenvalues and W = (w1, . . . ,wn) the matrix
collecting the eigenvectors (placed column-wise).
Let us substitute such expression in (64) and let us multiply on the left by W�1. Setting
z(t) = W�1v(t) and z0 = W�1v0, problem (64) is equivalent to

8
<

:
z0 = ⇤z , t > 0 ,

z(0) = z0 ,

namely, to the n independent scalar problems in the components zp, 1  p  n, of the
vector z 8

<

:
z
0
p = �pzp , t > 0 ,

zp(0) = z0p .
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The solutions of the n independent scalar problems
8
<

:
z
0
p = �pzp , t > 0 ,

zp(0) = z0p ,

(65)

are given by
zp(t) = e�pt

z0p

and since by assumption Re�p < 0, one has

|zp(t)| ! 0 for t ! +1 and for each p .

As a consequence, for t ! +1 one has kz(t)k ! 0, hence, also
ku(t)� u1k = kv(t)k = kWz(t)k ! 0, which means, as anticipated, u(t) ! u1.

Thus, we are led to consider the generic scalar problem introduced above, i.e.,
8
<

:
z
0 = �z , t > 0 ,

z(0) = z0 ,

(66)

and to ask ourselves under which conditions a time-advancing scheme applied to such a
problem produces discrete solutions zk which stay bounded as k ! 1.
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The asymptotic stability of the Explicit Euler scheme (I)

The explicit Euler scheme applied to the equation z
0 = �z yields

z
k+1 = z

k +�t�z
k = (1 +�t�)zk , k � 0 ,

hence by recursion, and keeping into account the initial condition, one gets the explicit
expression

z
k = (1 +�t�)^k

z0 ,

where the symbol ^k means raising the basis to the k-th power.
The condition |zk| ! 0 as k ! +1 is then equivalent to the condition

|1 +�t�| < 1 .

On the other hand, if instead one has |1 +�t�| = 1, then the solution stays bounded as
k ! +1, although it does not tend to 0; indeed, one has |zk| = |z0| for each k � 0. At
last, if |1 +�t�| > 1, then necessarily one has |zk| ! +1 as k ! +1.

In conclusion, setting ↵ = �t� 2 C, boundedness of the discrete solutions is equivalent to

|1 + ↵|  1 .
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The asymptotic stability of the Explicit Euler scheme (II)

The inequality |1 + ↵|  1 defines,
in the complex plane, a circle of
center �1 and radius 1. This re-
gion is termed the region of asymp-
totic stability of the explicit Eu-
ler scheme, and denoted by REE .
Its internal part will be denoted by
int (REE).

0�1�2

REE

Thus, if we want all the components of zk = (zkp ) to decay to 0, we are forced to choose
�t in such a way that the condition

�t�p 2 int (REE) for each p = 1, . . . , n , (67)

is satisfied; this is always possible, thanks to the assumption Re�p < 0 on the eigenvalues
of A.
The explicit Euler scheme is therefore conditionally asymptotically stable, i.e., it is
necessary to satisfy this condition on �t, termed the asymptotic stability condition, in
order to get the desired behaviour of the discrete solutions. It may occur, however, that
such a condition is overly restrictive in practice.
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The asymptotic stability of the Explicit Euler scheme (III)

In the important case where the matrix A is symmetric, and consequently all its
eigenvalues are real and negative, we have �t�p 2 int (REE) if and only if

�2 < �t�p < 0 ;

the second inequality is always fulfilled, whereas the first one is equivalent to

�t <
2

|�p|
.

Thus, the asymptotic stability condition (67) becomes

�t <
2

maxp |�p|
. (68)

If the matrix A has eigenvalues with orders of magnitude quite di↵erent from each other
(i.e., if it is ill-conditioned - in the language of systems of di↵erential equations one says
that the system is sti↵ ), we are obliged to advance with a time-step dictated by the
eigenvalue of largest absolute value, even if the actual behaviour of the exact solution
would not require such a restriction.

(See next example.)
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The asymptotic stability of the Implicit Euler scheme (I)

The implicit Euler scheme applied to the equation z
0 = �z yields

z
k+1 = z

k +�t�z
k+1

, k � 0 ,

i.e.,
(1��t�)zk+1 = z

k
, k � 0 .

Thus, the scheme generates the sequence

z
k =

✓
1

1��t�

◆^k

z0 , k � 0 ,

which converges to 0 as k ! +1 if and only if the quantity in parenthesis is smaller
than 1 in absolute value.

Setting ↵ = �t�, this is equivalent to the condition

1
|1� ↵| < 1 ,

i.e.,
|1� ↵| > 1 .
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The asymptotic stability of the Implicit Euler scheme (II)

Therefore, the region of asymptotic
stability REI of the implicit Euler
scheme is defined as the set of all com-
plex numbers ↵ such that |1� ↵| � 1.

0 1 2

REI

Since the real part of �t�p is strictly negative, we have

�t�p 2 int (REI) for each p = 1, . . . , n and whichever �t > 0 is .

Thus, there are no restrictions on the choice of the time step. We conclude that the
implicit Euler scheme is unconditionally asynptotically stable.
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The asymptotic stability of the trapezoidal scheme (I)

The trapezoidal (or Crank-Nicolson) scheme applied to the equation z
0 = �z yields

z
k+1 = z

k +�t�

✓
1
2
z
k +

1
2
z
k+1

◆
, k � 0 ,

namely,

(1� �t

2
�)zk+1 = (1 +

�t

2
�)zk , k � 0 ,

whose exact solution is given by

z
k =

 
1 + �t

2 �

1� �t
2 �

!^k

z0 , k � 0 .

Setting ↵ = �t�, such a solution tends to 0 as k ! +1 if and only if one has
���1 +

↵

2

��� <
���1�

↵

2

��� .

Now, it is easily seen that if ↵ is any complex number, the inequality

|1 + ↵

2
|  |1� ↵

2
|

is equivalent to Re↵  0.
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The asymptotic stability of the trapezoidal scheme (II)

Therefore, the region of asymptotic
stability RCN of the trapezoidal
scheme is give by the half-plane on
the left of the imaginary axis; such
a region coincides indeed with the
region in which all the eigenvalues
of the matrix A have to fall in order
for the system (64) to have all its
solutions bounded as t ! +1.

RCN

In this case, too, one has

�t�p 2 int (RCN ) for each p = 1, . . . , n and whichever �t > 0 is ;

hence, the trapezoidal scheme is unconditionally asymptotically stable.
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The asymptotic stability of other schemes

The Runge Kutta schemes presented above are all conditionally asymptotically
stable. Their regions of asymptotic stability are larger that the one for the Explicit
Euler scheme.
(See plots in the Notes of the Course).

The BDF schemes presented above have regions of asymptotic stability which
contain a corner in the half-plane Re↵  0, with center at the origin and
symmetrically placed around the real negative semi-axis.
Therefore, such methods are particularly suited for the discretization of sti↵
di↵erential systems, as they turn out to be unconditionally asymptotically stable if
the matrix of the system has all real and negative eigenvales.
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An example of “sti↵” system (I)

Consider the problem 8
<

:
v0 = Av , t > 0 ,

v(0) = v0 ,

with

A = �

0

@
1001
2

999
2

999
2

1001
2

1

A and v0 =

✓
2
0

◆
.

The eigenvalues of the matrix are �1 = �1 and �2 = �1000, with corresponding
eigenvectors given by w1 = (1, 1)T and w2 = (1, �1)T . Thus, the exact solution can
be written as ✓

v1(t)
v2(t)

◆
=

✓
1 1
1 �1

◆ ✓
z1(t)
z2(t)

◆
,

with z1(t) = e�t and z2(t) = e�1000t, i.e., we obtain
(
v1(t) = e�t + e�1000t

,

v2(t) = e�t � e�1000t
.

We thus have a very small transient, of the order of 1/1000 seconds, followed by a much
slower evolution, in the time scale of seconds.
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An example of “sti↵” system (II)

If we advance in time with the explicit
Euler scheme, we are forced to respect
the asymptotic stability condition (68),
namely

�t <
2

max(|� 1|, |� 1000|) =
1

500
,

not only during the transient period, but
throughout the whole simulation, other-
wise the computation quickly yields an
overflow.

Using instead the implicit Euler scheme,
or the more accurate trapezoidal scheme,
allows us to vary the time-advancing
step, choosing it in the order of 1/500
seconds during the transient period, but
subsequently letting it to increase as the
solution goes towards a steady state.

0

2

t

v1

v2

3/1000

198 / 245



Time discretization of the thermal model

Let us now discretize in time the problem
8
<

:
Bu0 +Au = f(t) , 0 < t  T ,

u(0) = u0 .

using one of the previously presented schemes, namely the Explicit Euler scheme, the
Implicit Euler scheme and the Trapezoidal (or Crank-Nicolson) scheme.

To this end, it is convenient to write the di↵erential system in the equivalent (normal)
form

u0 = F (u, t) = �B�1Au+B�1f(t) ( = Au+ b(t) ) .

Let us stress that such a transformation is only useful at the conceptual level, in order to
apply the abstract time-advancing schemes in our specific setting. At the
implemententation level, the multiplication by the inverse of B is almost invariably not
e�cient, hence, to be avoided; it is surely preferable to leave such matrix on the left-hand
side of the equation, as shown in the sequel.
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The Esplicit Euler scheme yields

uk+1 = uk ��tB�1Auk +�tB�1f(tk) , k � 0 ,

which we re-formulate as

Buk+1 = (B ��tA)uk +�tf(tk) , k � 0 .

In the latter form, the scheme is not explicit, since at each iteration it requires the
solution of a linear system with matrix B. However, if we approximate B with the
“lumped” mass matrix B̃, which is diagonal, then the cost of computing uk+1 is
essentially comparable to that of an explicit method.

In the sequel, we will see that the asymptotic stability condition for the Explicit
Euler scheme becomes, in this case,

�t  C h
2

(with C proportional to µ = /c); this poses a restriction on the choice of the
time-step, which often is not acceptable in practice.

The scheme is first-order accurate in time.
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The Implicit Euler scheme yields

uk+1 = uk ��tB�1Auk+1 +�tB�1f(tk+1) , k � 0 ,

which we re-formulate as

(B +�tA)uk+1 = Buk +�tf(tk+1) , k � 0 .

In this case, one has to solve a linear system at each iteration, with matrix
B +�tA symmetric and positive definite (since it is the sum of two matrices with
these properties).
The gain over Explicit Euler is that the scheme is unconditionally stable.

The scheme is again first-order accurate in time.
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The Trapezoidal (or Crank-Nicolson) scheme yields, for our problem, the update

(B + �t
2 A)uk+1 = (B � �t

2 A)uk + �t
2 (f(tk) + f(tk+1) ) , k � 0 .

The scheme is again unconditionally stable, but now second-order accurate in time.

Hence, with a moderate increment in the cost of computing the right-hand side as
compared to the Implicit Euler scheme, one significantly gains in precision, as the
order of the scheme is increased by one.

If we keep the time-step �t constant and we use a direct method to solve the linear
system, then it is convenient to factorize the matrix

B + �t
2 A

(for instance by computing its Choleski factorization) once and for all at the
beginning of the time loop: at each time instant, we will only have to perform a
forward-backward substitution.

On the contrary, if one uses an iterative method, such as Conjugate Gradient, then
the computed solution uk at the previous time instant will provide the initial guess
for the new iteration.
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The asymptotic stability condition for the Explicit Euler scheme

Recall that the asymptotic stability condition for the Explicit Euler scheme

�t ✓h 2 int (REE) for any eigenvalue ✓h of the matrix A = �B�1A.

Let us observe that ✓h is an eigenvalue of A = �B�1A if and only if there exists a
non-zero vector w such that

Aw = ✓hw ,

i.e.,
B�1Aw = �✓hw ,

namely, if and only if ✓h = ��h, with �h eigenvalue of the matrix B�1A.

In turns, this is true if and only if �h is a solution of the generalized eigenvalue problem

Aw = �hBw .

We have seen that such a problem arises in the discretization of the modal analysis
problem for an elastic membrane.
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From this relation we derive
wTAw = �hw

TBw ,

which provides th expression of �h as a Rayleigh quotient

�h =
wTAw
wTBw

.

This shows that all the eigenvalues �h are real and strictly positive (since the matrices A
and B are both symmetric and positive definite), hence, all the eigenvalues ✓h of the
matrix A are real and negative.

Consequently, the asymptotic stability condition of the Explicit Euler scheme

�t  2
max |✓h|

is equivalent to

�t  2
max�h

.

Since we have stated above that max�h ⇠ ch
�2, the asymptotic stability condition

becomes
�t  C h

2
,

as anticipated.

204 / 245



Time discretization of the elastic model: the Newmark scheme

In order to discretize in time the second-order system

u00 = F (u, t) = �B�1Au+B�1f(t) ,

it is customary to resort to the Newmark scheme.
It is written as

uk+1 � 2uk + uk�1 = �t
2(�F (uk+1

, tk+1) + (1� 2�)F (uk
, tk) + �F (uk�1

, tk�1)) ,

where � � 0 is a parameter to be chosen. Equivalently, this can be written as

B(uk+1 � 2uk + uk�1) +�t
2A(�uk+1 + (1� 2�)uk + �uk�1) =

= �t
2(�f(tk+1) + (1� 2�)f(tk) + �f(tk�1)) .

The scheme defines the time approximations starting from k = 1. Hece, it requires two
initial values, u0 and u1. The first value is obviously chosen equal to u0, whereas the
Taylor expansion of u(t) at the origin, u(t1) = u(0) +�tu0(0) +O(�t

2), suggests the
choice u1 = u0 +�tv0.

Let us remark that if � = 0 and if the mass matrix B is replaced by the lumped mass
matrix B̃, then the previous scheme is explicit. In any other case, the scheme is implicit,
and at each time instant uk+1 is determined by solving a linear system with matrix
B +�t

2
�A.
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As far as accuracy is concerned, the scheme turns out to be second-order accurate for
each value of �.

On the other hand, as far as asymptotic stability is concerned, the scheme turns out to
be

unconditionally stable if � � 1
4 .

only conditionally stable if � <
1
4 .

In the latter case, the asymptotic stability condition is

�t
2
�h,max <

4
1� 4�

,

where �h,max denotes the maximum eigenvalue of the matrix B�1A. We have already
noticed that the order of magnitude of this eigenvalue is O(h�2).

As a consequence, the previous conditions enforces a restriction of the type

�t  C h

on the choice of the time step. Such a condition is by far less stringent that the stability
condition for a conditionally stable scheme applied to the heat equation, which is of the
type �t  C h

2.

In most cases, such a condition turns out to be fully acceptable, since it is anyway
required by the need of guaranteeing enough time accuracy on the discretization.
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