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CONVECTION-DIFFUSION AND TRANSPORT PROBLEMS

Let us consider a fluid which occupies a thin volume in space

V = ⌦⇥ [�", "] ,

where ⌦ is a bounded region in the plane.

Let us suppose that the fluid motion is bi-dimensional, namely, that its variations in the
z-direction are negligible. In this case, the flow can be described by functions defined in
⌦.

Let us adopt the Eulerian point of view: if � is a physical variable (velocity, pressure,
temperature, ...), the expression �(x, t) indicates the value of � associated with the fluid
particle that at time t is at the point x 2 ⌦.

Let us denote the velocity of the fluid by a = a(x, t), and its temperature by u = u(x, t).
Let us assume that the flow is incompressible: this is expressed by the condition

r · a = 0 in ⌦ for each t ,

which implies that the density ⇢ is constant (in space and time).

Let us also assume that the specific heat c and the thermal conductivity  are constant.
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If the fluid is at rest, its temperature obeys the heat equation

c ⇢
@u
@t

� �u = ⇢ q .

If the fluid is in motion, the partial derivative @u
@t in this equation must be replaced

by the total derivative (also known as Lagrangean derivative, or particle derivative)

Du
Dt

=
@u
@t

+ a ·ru , (69)

which represents the time derivative of the temperature of a particle followed along
its motion.

Thus, we obtain the equation

c ⇢

✓
@u
@t

+ a ·ru

◆
� �u = ⇢ q .
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In order to justify this statement, let us recall that particles move along streamlines
x = x(t), defined as the solutions of the di↵erential system

dx
dt

= a(x, t)

(hence, the velocity vectors are tangent to the streamlines at each point); in particular,
the particle that at a certain time t0 passes through the point x0 moves along the
streamline defined by the Cauchy problem

8
<

:

dx
dt

= a(x, t)

x(t0) = x0 ;

let us indicate such a solution by x = x(t,x0). Then, the function

t 7! u(x(t,x0), t)

describes the time evolution of the temperature of the particke that at time t0 passes
through x0. Let us set

Du
Dt

(x0, t0) =
d
dt

u(x(t,x0), t)��t=t0
.
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By applying the chain rule (di↵erentiation of a composite function), we have

Du
Dt

(x0, t0) =

✓
ru(x(t,x0), t) ·

d
dt

x(t,x0) +
@u
@t

(x(t,x0), t)

◆
��t=t0

,

and since by definition of x = x(t)

dx
dt

= a(x, t) ,

we obtain
Du
Dt

(x0, t0) = ru(x0), t0) · a(x0, t0) +
@u
@t

(x0, t0) ,

namely, formula (69).
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Going back to the equation

c ⇢

✓
@u
@t

+ a ·ru

◆
� �u = ⇢ q ,

it is convenient to divide both sides by c ⇢, and set

⌫ =

c ⇢

(coe�cient of thermal di↵usion) , f =
q
c
;

we thus obtain the convection-di↵usion equation

@u
@t

+ a ·ru� ⌫�u = f in ⌦ , 0 < t  T . (70)

It requires to specify, in addition to the initial condition u(0) = u0, one condition on u at
each point of the boundary of ⌦, for each time t.

211 / 246



n

n

n

n

a

a

a

a

�car

�out

�car

�in

To this end, it is appropriate to partition the boundary @⌦ in

@⌦ = �in [ �car [ �out ,

where, denoting as usual by n = n(x) the normal unit vector to @⌦ pointing outward ⌦,
we set:

�in = {x 2 @⌦ : a · n < 0} (inflow boundary, the fluid enters ⌦) ,

�car = {x 2 @⌦ : a · n = 0} (characteristic boundary, the fluid is flowing along it) ,

�out = {x 2 @⌦ : a · n > 0} (outflow boundary, the fluid is leaving ⌦) .

Note that, since a may depend upon time, such a partition may itself vary in time.
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It is reasonable to assume that we know the temperature of the fluid entering ⌦,
i.e., we enforce the Dirichlet condition

u = g on �in , 0 < t  T .

At the outflow, the fluid temperature is usually unknown, whereas it is reasonable to
make assumptions on the outgoing heat flux; for instance, one may enforce the
Neumann condition

@u
@n

= 0 on �out , 0 < t  T ,

meaning that we assume therein that the heat flux

� = (a · n)⇢ c u� 
@u
@n

takes the value � = (a · n)⇢ c u, i.e., it is fully of convective nature.

At last, on �car one may assign the temperature value (if the wall is a thermostate),
or the heat flux (if, for instance, the wall is thermally insulated).
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Other examples of applications

The convection-di↵usion equation

@u
@t

+ a ·ru� ⌫�u = f in ⌦ , 0 < t  T ,

also describes the temporal evolution of a mass dispersed in a fluid; for instance, u may
represent the concentration of a pollutant in a liquid. In this case, the equation is also
referred to as the transport-di↵usion equation.

In general, the convection-di↵usion equation describes the evolution of a passive scalar u
(passive means that it does not influence the fluid motion, i.e., the velocity field a does
not depend on u).
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The Péclet number

The convection-di↵usion equation models the simultaneous presence of two physical
phenomena: heat convection along the streamlines and heat di↵usion due to molecular
interaction.
The trade-o↵ between the two phenomena is described by the Péclet number

Pe = AL
2⌫

� 0 ,

where A = max⌦ kak is the maximum modulus of velocity, whereas L is a characteristic
length (such as the diameter of ⌦).

If Pe is comparable to 1, convection and di↵usion have comparable importance.

If Pe << 1, the di↵usive e↵ects are prevailing over the convective ones.
(In particular, if Pe = 0, i.e., a = 0 identically, one has di↵usion alone, i.e., one is
back to the heat equation).

If Pe >> 1 instead, convection outweights di↵usion; the limit case Pe = +1, namely
⌫ = 0, corresponds to the pure convection equation (also indicated as transport
equation)

@u
@t

+ a ·ru = f .
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Limit for Pe ! 1

Convection-di↵usion equation (Pe < 1) :

@u
@t

+ a ·ru � ⌫�u = f in ⌦ ,

boundary conditions on �in [ �car [ �out .

Pure-convection, or transport, equation (Pe = 1) :

@u
@t

+ a ·ru = f in ⌦ ,

boundary conditions on �in .

When Pe >> 1, the solution to the convection-di↵usion equation tends to behave, in
most of the domain, like the solution of the purely-convective equation; where this does
not happen, thermal boundary layers or internal layers are formed, i.e., sudden variations
of the temperature.
An example is when a boundary layer is created next to �char or �out: the temperature,
flowing along the internal streamlines, is all of a sudden forced to satisfy boundary
conditions imposed by the nature of the convection-di↵usion equation.
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Numerical discretization

Whether or not convection prevails over di↵usion a↵ects the e�ciency of discretization
schemes as well, and consequently their choice.

At the numerical level the role of the Péclet number is played by the mesh Péclet number.
Precisely, in each element T of the mesh, with diameter hT , one defines the local Péclet
number

PeT =
kaT khT

2⌫

✓
vs Pe = AL

2⌫

◆
;

this means that the characteristic velocity and length of the domain ⌦ are replaced by
those of the mesh element T .
The mesh Péclet number is then defined as

Peh = max
T

PeT .

One says that the convection-di↵usion problem is, relatively to the grid adopted,

di↵usion-dominated, if Peh  1,

convection-dominated, if Peh > 1.

217 / 246



The e↵ect of the mesh Péclet number

For a di↵usion-dominated problem, the finite-di↵erence or finite-element methods
used so far for the heat equation may be successfully adopted also for the
convection-di↵usion equation.

For a convection-dominated problem, the same methods may be unstable, i.e., they
may spawn spurious (non-physical) oscillations between the nodes.

Therefore they must be replaced by other kinds of discretizations, that take into
account the mainly propagative character of the phenomenon modelled.
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Di↵usion-dominated problems (Peh  1)

Discretization by finite di↵erences:

On a equally-spaced grid with nodes x`m = (x`, ym), the convective term a ·ru is
discretized by means of second-order centered incremental quotients, in the two
directions x and y. We thus have

(a ·ru)(x`m) ' a1(x`m)
u`+1,m � u`�1,m

2h
+ a2(x`m)

u`,m+1 � u`,m�1

2h
.

In this manner, setting a1,`m = a1(x`m) and a2,`m = a2(x`m), we obtain the following
spatial semi-discretization scheme for the convection-di↵usion equation:

u0
`m +

a1,`m

2h
(u`+1,m � u`�1,m) +

a2,`m

2h
(u`,m+1 � u`,m�1)

+
⌫
h2

(�u`,m�1 � u`�1,m + 4u`m � u`+1,m � u`,m+1) = f`m,

1  `,m  N , 0 < t  T ,

which must be supplemented with appropriate conditions at the boundary nodes, as well
as with initial conditions.

219 / 246



Di↵usion-dominated problems (Peh  1)

Discretization by finite elements:

The discrete integral formulation of the convection-di↵usion equation (assuming for
simplicity vanishing boundary conditions) is
8
><

>:

uh(t) 2 Vh and satisfies
Z

⌦

@uh

@t
vh dx+

Z

⌦

(a ·ruh) vh dx+

Z

⌦

⌫ruh ·rvh dx =

Z

⌦

f vh dx 8vh 2 Vh .

It is translated, as usual, into the system of ordinary di↵erential equations

Bu0 +Au = f ,

where now the “sti↵ness matrix” A may be decomposed as

A = C +D ,

where D = (djk) with djk =
R
⌦
⌫r'k ·r'j dx indicates the by now familiar symmetric

and positive-definite matrix that describes di↵usion, whereas

C = (cjk) , with cjk =

Z

⌦

(a ·r'k) 'j dx ,

is the matrix that describes convection.
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The matrix C turns out to be as sparse as D, but it is not symmetric; note that it may
depend upon time via a, namely in general C = C(t).

Let us investigate the structure of the matrix C(T ) relative to an element T 2 T ; this
elemental matrix collects the contribution of the element T to the global matrix C. With
the usual notation, we have

C(T ) =
⇣
c(T )
↵�

⌘

1↵,�3
2 R3⇥3 , with c(T )

↵� =

Z

T

(a ·r'�)'↵ dx .

If aT denotes a constant that approximates a on T , we may properly define the matrix by
setting

c(T )
↵� =

Z

T

(aT ·r'�)'↵ dx = aT ·r'�

Z

T

'↵ dx ,

since aT ·r'� is constant on T ; on the other hand,
Z

T

'↵ dx =
1
3
|T | , 1  ↵  3 ,

(volume of the pyramid with base T and height 1). We conclude that

c(T )
↵� =

1
3
|T |aT ·r'� , 1  ↵,�  3 .
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Let us observe that

c(T )
↵� =

1
3
|T |aT ·r'�

does not depend upon ↵; hence, the three rows of the matrix C(T ) are equal.

Furthermore, the sum of the entries in each row is zero, since

3X

�=1

c(T )
↵� =

1
3
|T |aT ·r

0

@
3X

�=1

'�

1

A = 0 ;

this represents a very useful “test” of correctness.
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The convection matrix in the one-dimensional case

Let us consider the convection-di↵usion equation in an interval [0, L] of the real line,
submitted to homogeneous Dirichlet boundary conditions:

8
>>>><

>>>>:

@u
@t

+ a
@u
@x

� ⌫
@2u
@x2

= f in (0, L) , 0 < t  T ,

u(0, t) = u(L, t) = 0 0 < t  T

u(x, 0) = u0(x) in (0, L) ,

where a = a(x, t) is a variable coe�cient in [0, L], whereas ⌫ > 0 is constant.

Let us discretize the problem by linear finite elements on a subdivision of the interval
[0, L] in elements Ij = [xj�1, xj ] of size hj . With the usual notation, the convection
matrix C is given by

C = (cjk) , with cjk =

Z L

0

a
d'k

dx
'j dx ;

it turns out to be tridiagonal (since cjk = 0 if |j � k| > 1).
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Let us approximate the velocity a in the element Ij by a constant value aj�1/2

(for instance, by the value a((xj�1 + xj)/2, t) in the midpoint of the element).

With easy computations, we obtain

cjk =

8
>>>>>>><

>>>>>>>:

aj�1/2

2
�

aj+1/2

2
if k = j ,

�
aj�1/2

2
if k = j � 1 ,

aj+1/2

2
if k = j + 1 ,

0 otherwise .

Let us observe that if a is constant, then C reduces to the form

C =
a
2
tridiag [�1 0 1]

and is anti-symmetric, i.e., it satisfies CT = �C.
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Convection-dominated problems (Peh >> 1)

In order to highlight the di�culties arising from the use of standard discretization
schemes when Peh >> 1, let us consider the steady version of the problem

8
>>>><

>>>>:

@u
@t

+ a
@u
@x

� ⌫
@2u
@x2

= f in (0, L) , 0 < t  T ,

u(0, t) = 0 , u(L, t) = 0 0 < t  T ,

u(x, 0) = u0(x) in (0, L) ,

namely, 8
<

:
a
du
dx

� ⌫
d2u
dx2

= f in (0, L) ,

u(0) = 0 , u(L) = 0 ,

with a 6= 0 constant.
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0 1

1

Let us choose f = 1, a = 1 and ⌫ = 10�2. In most of the interval, the exact solution is
close to the solution ũ(x) = x of the pure convection problem

8
<

:
a
dũ
dx

= f in (0, L) ,

ũ(0) = 0 ;

only in a neighborhood of size O(⌫) of the outflow point x = 1, u deviates from ũ in
order to adapt itself to the boundary condition enforced therein. Thus, a boundary layer
appears.
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0 1

1

Let us discretize the problem by means of centered finite di↵erences on a equally-spaced
grid of stepzise h; we obtain

a
2h

(uj+1 � uj�1) +
⌫
h2

(�uj�1 + 2uj � uj+1) = fj , 1  j  N � 1 ,

With the same values of f , a and ⌫ given above, the choice h = 1/16 yields

Peh = ah/2⌫ = 100/32 > 1 .

The spurious inter-node oscillations are typical instabilities created by the use of a
centered scheme: this is not appropriate for the convection-dominated regime,
characterized by a precise direction of propagation (here from left to right, since a > 0).

A similar behavior occurs if we adopt a discretization based on standard linear finite
elements, without any specific trick.
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Remedies

Reduce the meshsize h, i.e., refine the computational grid, to the extent that the
corresponding mesh Péclet number is brought to values  1.
(Often prohibitive, in dimension 2 and, especially, 3.)

Use the same grid but change the way the convective term is discretized.
The most natural and simple strategy consists of replacing, in the discretization
scheme, the centered incremental quotient

a
du
dx

(xj) ' a
uj+1 � uj�1

2h
,

by the backward incremental quotient

a
du
dx

(xj) ' a
uj � uj�1

h
if a > 0 ,

or by the forward incremental quotient

a
du
dx

(xj) ' a
uj+1 � uj

h
if a < 0 .

In this way, one adopts the philosophy of upwind schemes.
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0 1

1

Here is what we get in our example by using the backward incremental quotient.

One can show that such a scheme is indeed equivalent to a centered scheme applied to
another convection-di↵usion equation, namely the one in which ⌫ is replaced by

⌫̃ = ⌫ +
|a|
2
h

(i.e., an artificial di↵usion, or numerical di↵usion, proportional to h, has been added), in
such a way that the new mesh Péclet number satisfies

P̃eh =
|a|h
2⌫̃

=
|a|h

2⌫ + |a|h
< 1 .
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The standard finite element discretization can be modified as well according to the
upwind philosophy, to account for the presence of a dominant convective term.

For instance, in the popular SUPG (Streamline Upwind Petrov-Galerkin) method, one
adds to the discrete variational formulation a specific stabilization term. In this manner,
an artificial di↵usion e↵ect is generated, which prevents the onset of spurious oscillations.

A simple form of stabilization is as follows:
Z

⌦

@uh

@t
vh dx+

Z

⌦

(a ·ruh) vh dx + Sh(uh, vh) +

Z

⌦

⌫ruh ·rvh dx

=

Z

⌦

f vh dx 8vh 2 Vh ,

where

Sh(uh, vh) =
X

T2T

⌧T

Z

T

(aT ·ruh) (aT ·rvh) dx

with

⌧T =

8
<

:

hT

kaT k
if PeT > 1,

0 otherwise.
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