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THE MODEL OF ELASTIC STRING

Consider a thin elastic string with constant round cross section S. In absence of external
forces, the axis is aligned along the interval [0, L] on the coordinate axis x1. The elastic
is fixed at the endpoints of the interval.

Let us apply a (small) density of force f = 0e1 + 0e2 + f3e3 per unit of volume lying on
the plane x1x3 and normal to the string axis. This induces a (small) dispacement
u = u1e1 + u2e2 + u3e3 of the string from the reference position; more precisely,
u = u(x) denotes the displacement of the point particle at the point x at reference
position.

The dispacement will be coplanar with the force, so that u2 = 0; at first approximation,
moreover, the component u1 is negligible with respect to the component u3 that
describes the displacement along the force.
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Take x1 2 (0, L) and let �V0 = [x1, x1 +�x]⇥ S be an element of the string of length
�x at reference; denote by ⌃0,x1 = {x1}⇥ S and ⌃0,x1+�x = {x1 +�x}⇥ S the cross
sections delimiting the element.

x1

x2

x3

⌃0,x1

⌃0,x1+�x

0

�V0

L
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Under the applied force the element transforms into the element �V ; let ⌃x1 and
⌃x1+�x be the transformed cross sections. Indicate by

� =

0

@
�1 ⌧12 ⌧13
⌧21 �2 ⌧23
⌧31 ⌧23 �3

1

A (1)

the stress tensor of the string.

Now let n be the normal to the transformed section, oriented from the interior to the
exterior of �V . The equilibrium equation reads

Z

�V

fdV +

Z

⌃x1+�x

�n d⌃+

Z

⌃x1

�n d⌃ = 0 . (2)
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Having assumed small dispacements we may, as first approximation, identify �V with
�V0, as well as the transformed cross sections with the reference one. This and the
assumption that the string is thin allows us to switch to a one-dimensional model. In fact,

Z

�V

fdV '
Z

�V0

fdV =

Z x1+�x

x1

✓Z

S

f(x, x2, x3) dx2dx3

◆
dx = |S|

Z x1+�x

x1

f̃(x) dx ,

where |S| is the area of the section S and f̃(x) is the mean value of f over the section S
at x 2 (0, L):

f̃(x) =
1
|S|

Z

S

f(x, x2, x3) dx2dx3 .

Proceeding in a similar manner with surface integrals we obtain the approximate
equations

|S|
Z x1+�x

x1

f̃(x) dx+ |S| �̃ ñ|x1+�x + |S| �̃ ñ|x1 = 0 . (3)
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Let us divide by |S| and note that by assumption, ñ|x1+�x ' e1 and ñ|x1 ' �e1.
Furthermore, let us omit the symbol ˜ to make the notation simpler. Therefore

Z x1+�x

x1

f(x) dx+ � e1|x1+�x � � e1|x1
= 0 . (4)

Now we take the component along x3 of this vector equation, i.e., we apply the dot
product with e3 to obtain

Z x1+�x

x1

f3(x) dx+ ⌧31|x1+�x � ⌧31|x1 = 0 . (5)

Dividing by �x and taking the limit as �x ! 0 brings us to the di↵erential relation

f3(x1) +
d⌧31
dx

(x1) = 0 , x1 2 (0, L) , (6)

expressing the string’s equilibrium state. Here

⌧31

is the vertical component of the shear stress acting on the cross section.
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Now, we invoke Hooke’s law, that relates the stress tensor � to the deformation, or
strain, tensor ":

� = 2µ"+ �tr(")I , (7)

where � > 0, µ > 0 are known as Lamé coe�cients of the elastic material, " is the strain
tensor

" = ("ij)1i,j3 , "ij =
1
2

✓
@ui

@xj
+
@uj

@xi

◆
, (8)

tr(") = "11 + "22 + "33 = r · u is its trace and I = (�ij)1i,j3 is the identity tensor.
Taking the component 3, 1 of equation (7) and recalling that u1 is negligible with respect
to u3, gives the approximate constitutive equation

⌧31 = µ
@u3

@x1
. (9)

Eventually, we omit indices in u3, ⌧31 f3 just to simplify the notation. The coe�cient µ,
called shear modulus, can be expressed using Young’s module E and the Poisson

coe�cient ⌫, as follows

µ =
E

2(1 + ⌫)
. (10)
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Thus, we have obtained the following system of equations:

8
>>><

>>>:

d⌧
dx

+ f = 0 in (0, L) ,

⌧ = µ
du
dx

in (0, L) ,

u(0) = u(L) = 0 ,

(11)

where the latter tells that the string is fixed at the endpoints of the interval [0, L].
Substituting the expression for ⌧ in the former equation produces

8
<

:
� d
dx

✓
µ
du
dx

◆
= f in (0, L) ,

u(0) = u(L) = 0 .
(12)

Hence the string’s displacement solves a boundary value problem for a linear di↵erential
equation of order two. The problem admits one, and one only, solution if, for instance, µ
and f are continuous functions (or piecewise continuous) on [0, L].
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It is easy to write u in terms of f by integration. Integrating the first equation of (11), in
fact, gives

⌧(x) = C1 �
Z x

0

f(s) ds (13)

while integrating the second of (11) produces

u(x) = C2 +

Z x

0

⌧(s)
µ(s)

ds ; (14)

substituting (13) in (14) leads to the required expression for u. The constraint u(0) = 0
implies straightforward C2 = 0, while the constant C1 is determined by imposing

u(L) = 0, that is

Z L

0

⌧(s)
µ(s)

ds = 0.

However, the procedure to find the analytical solution just described may be rather
involved due to the computation of the integrals. In addition, it cannot be generalised to
bidimensional models.

For these reasons we opt for another way that consists in discretising problem (12) and
reducing it to a linear algebraic system.
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THE MODEL OF HEATED BEAM

Let us consider a thin metallic beam whose axis occupies the position of the interval
[0, L] on the x-axis. If we identify the beam with its axis, we are allowed to describe all
physical quantity of interest as functions of the abscissa x and time t.

In particular, we will see that the temperature u = u(x, t) of the material point of
abscissa x at time t satisfies the equation

c ⇢
@u
@t

� @
@x

✓

@u
@x

◆
= ⇢ q ,

where

⇢ is the mass density per unit of length,

c is the specific heat of the beam,

 is the coe�cient of termal conductivity of the beam,

q is the external heat contribution per unit of mass and length.

In the steady-state case, i.e., when all variables do not depend upon time, the equation
takes the simplified form

� d
dx

✓

du
dx

◆
= ⇢ q .
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Setting µ =  and f = ⇢ q, we thus obtain the same mathematical equation which
describes the equilibrium of the elastic string, namely,

� d
dx

✓
µ
du
dx

◆
= f in (0, L) .

The equation has to be supplemented by one condition at each extremum of the interval
(boundary conditions). For instance, we can prescribe the temperature values g0 and gL
at the extrema:

u(0) = g0 , u(L) = gL .

As an alternative, in addition to the temperature at one extremum we can prescribe the
heat flux at the opposite extremum, e.g.,

u(0) = g0 , µ
du
dx

(L) =  L ,

for a given  L.
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DISCRETIZATION BY FINITE DIFFERENCES

Let N be any integer � 1; let us set h =
L

N + 1
. In the interval [0, L] let us introduce

the equally-spaced nodes xj = hj, with j = 0, 1, . . . , N + 1. We have

0 = x0 < x1 < . . . < xj�1 < xj < xj+1 < . . . < xN < xN+1 = L .

Such nodes form our computational grid.

Let us associate to each node xj a value uj , that we think as an approximation of the
displacement u at this node, i.e., uj ' u(xj).

The prescribed boundary conditions immediately yield the values u0 = uN+1 = 0.

Hence, we have to determine the values uj at the internal nodes, whose number is N .
These values will be our discrete unknowns. In order to accomplish this task, we use the
di↵erential equations at suitable internal points of the interval [0, L].
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A finite di↵erence method is based on the two following fundamental ingredients:

1 the approximation of the derivatives that appear in the equations, by means of
suitable numerical di↵erentiation formulas (such as incremental quotients); these
involve continguous nodes of the grid;

2 the requirement that the resulting equations be satisfied at the internal nodes.

In order to accomplish Step 1 above, a simple and natural choice consists of
approximating any derivative that appears in the equations by means of a centered

incremental quotient, based on two points symmetrically placed with respect to the point
at which we want to approximate the derivative; such an approximation turns out to be
more accurate than the one given by a backward or forward incremental quotient, again
based on two points.
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Let us first consider the remarkable particular case when the elastic coe�cient µ is
constant in [0, L]. In this situation, the di↵erential equation (12) which defines the
displacement becomes

�µ
d2u
dx2

= f .

Let us approximate the second derivative by the centered second incremental quotient

d2u
dx2

(xj) '
u(xj�1)� 2u(xj) + u(xj+1)

h2
' uj�1 � 2uj + uj+1

h2
.

Step 2 consists in enforcing the equations

� µ
uj�1 � 2uj + uj+1

h2
= fj , j = 1, . . . , N , (15)

namely

µ
h2

�
� uj�1 + 2uj � uj+1

�
= fj , j = 1, . . . , N ,

where we have set fj = f(xj) (we assume here that f is a continuous function in [0, L]).
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The e↵ect of the boundary conditions

Note that, taking into account the boundary condition u0 = 0, the first equation
(j = 1) involves only two unknowns:

µ
h2

�
2u1 � u2

�
= f1 .

Similarly, taking into account the boundary condition uN+1 = 0, the last equation
(j = N) involves only two unknowns:

µ
h2

�
� uN�1 + 2uN

�
= fN .

On the other hand, all other equations (2  j  N � 1) involve three consecutive
unknowns:

µ
h2

�
� uj�1 + 2uj � uj+1

�
= fj .
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Hence, we have got a system of N linear equations in the N internal unknowns uj . It
can be written in matrix form as

Au = f , (16)

with column vectors in RN

u =

0

BBBBB@

u1

u2

...
uN�1

uN

1

CCCCCA
, f =

0

BBBBB@

f1
f2
...
fN�1

fN

1

CCCCCA
, (17)

and square matrix A of order N , whose elements ajk are given by

ajk =
µ
h2

8
><

>:

2 if k = j ,

�1 if k = j ± 1 ,

0 otherwise ,

(18)

which we write as
A =

µ
h2

tridiag [�1 2 � 1] .
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Note that the matrix A is tridiagonal, i.e., the non-zero elements appear only in the main
diagonal and in the first upper- and lower-diagonal.
This is a particular instance of a banded matrix, namely a matrix whose non-zero
elements are contained in a band made of 2m+ 1 diagonals symmetrically placed around
the main diagonal (the integer m is called the band half-width); in our case, we have
m = 1.
In turns, a banded matrix with m much smaller than N is a particular instance of a
sparse matrix, i.e., a matrix such that the number of its non-zero elements is small
compared to the total number of elements; in our case, the non-zero elements are
3N � 2 out of a total of N2 elements.
At last, our matrix is symmetric, since aj,j+1 = aj+1,j for any j.
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Notation It is convenient to introduce a specific notation to indicate those tridiagonal
matrices having equal elements in each diagonal (with the possible exception of those in
the first and/or last row). Precisely, we will set

tridiag [a b c] =

0

BBBBBBBBBB@

b c
a b c

a b c
· · ·

· · ·
a b c

a b c
a b

1

CCCCCCCCCCA

(19)

and

tridiag [b0 c0; a b c; a00 b00] =

0

BBBBBBBBBB@

b0 c0

a b c
a b c

· · ·
· · ·

a b c
a b c

a00 b00

1

CCCCCCCCCCA

. (20)
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Let us now consider the general case of a variable coe�cient µ in [0, L], namely
equations (11).

In order to realize the centered incremental quotients, it is convenient to enrich the
computational grid by introducing new nodes having a semi-integer index, namely
xj+1/2 = h(j + 1/2), with j = 0, . . . , N ; each of them is placed in between two
continguous nodes with integer indices. We associate to them the approximate values
⌧j+1/2 ' ⌧(xj+1/2) of the shear stress.

Based on these ideas, let us introduce the following approximations of the first derivative
of ⌧ and of u:

d⌧
dx

(xj) '
⌧j+1/2 � ⌧j�1/2

h
and

du
dx

(xj+1/2) '
uj+1 � uj

h
. (21)
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Step 2 above is accomplished by enforcing the approximate form of the equilibrium
equation at the nodes with integer indices:

⌧j+1/2 � ⌧j�1/2

h
+ fj = 0 , j = 1, . . . , N , (22)

as well as the approximate form of the constitutive equation at the nodes with
semi-integer indices:

⌧j+1/2 = µj+1/2
uj+1 � uj

h
, j = 0, . . . , N , (23)

where we have set fj = f(xj) and µj+1/2 = µ(xj+1/2) .

(We assume throughout this Section that f and µ are continuous functions in [0, L]).

22 / 247



Substituting (23) into (22), we obtain the equations

� 1
h

⇣
µj+1/2

uj+1 � uj

h
� µj�1/2

uj � uj�1

h

⌘
= fj , j = 1, . . . , N ,

which can be written as

1
h2

�
�µj�1/2uj�1 + (µj�1/2 + µj+1/2)uj � µj+1/2uj+1

�
= fj , j = 1, . . . , N .

(24)
Hence, we obtain again a system of N linear equations in the N internal unknowns uj .
We write this system in matrix form as

Au = f ,

where A is the square tridiagonal symmetric matrix of order N whose elements are given
by

ajk =
1
h2

8
>>><

>>>:

µj�1/2 + µj+1/2 if k = j , with 1  j  N ,

�µj�1/2 if k = j � 1 , with 2  j  N ,

�µj+1/2 if k = j + 1 , with 1  j  N � 1 ,

0 otherwise .

(25)
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Further boundary conditions

To the equation

� d
dx

✓
µ
du
dx

◆
= f in (0, L) ,

we may associate the so-called Dirichlet boundary conditions

u(0) = g0 , u(L) = gL ;

they are said to be non-homogeneous when the assigned values are 6= 0.

As an alternative, one of the so-called Neumann boundary conditions

µ
du
dx

(0) =  0 , or µ
du
dx

(L) =  L ,

may be enforced at the corresponding endpoint of the interval; physically, any such
condition amounts to assigning the value of the shear stress (in the elastic model) or the
heat flux (in the thermal model).
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Non-homogeneous Dirichlet boundary conditions

Let us suppose that we have to enforce

u(0) = g0 .

In the first equation (relative to the first internal node x1)

1
h2

�
�µ1/2u0 + (µ1/2 + µ3/2)u1 � µ3/2u2

�
= f1 ,

let us replace u0 by the value g0, and let us move the corresponding term to the
right-hand side

1
h2

�
(µ1/2 + µ3/2)u1 � µ3/2u2

�
= f1 +

µ1/2

h2
g0 .

If we have to enforce
u(L) = gL ,

we manipulate in a similar manner the last equation (relative to the last internal node
xN ), and we get

1
h2

�
�µN�1/2uN�1 + (µN�1/2 + µN+1/2)uN

�
= fN +

µN+1/2

h2
gL .

In conclusion, it is enough to modify the first and last entry of the right-hand side of
the algebraic system.
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Neumann boundary conditions

Let us suppose that we have to enforce

µ
du
dx

(L) =  L .

Since the value of u in xN+1 = L is not prescribed, we have an additional unknown,
uN+1 ' u(xN+1) = u(L).

Thus, we need to add a new equation, at x = xN+1 = L. Assuming for simplicity that µ
is constant, let us add

�µ
uN � 2uN+1 + uN+2

h2
= f(L) ;

however, a further unknown uN+2, associated with the faked node xN+2 = L+ h outside
the interval [0, L], is introduced.

This unknown, though, is swiftly eliminated by imposing at the node xN+1 the
approximate Neumann condition given by the centred di↵erence quotient, i.e.,

µ
uN+2 � uN

2h
=  L .

In such a way, the second-order accuracy of the discretization is preserved.
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From this equation, we get

uN+2 = uN +
2h
µ
 L .

Substituting this value in the preceding equation and dividing by 2, we thus obtain the
(N + 1)-th equation of our algebraic system:

µ
h2

�
� uN + uN+1

�
=

1
2
f(L) +

1
h
 L = fN+1 .

Hence, the matrix of the algebraic system

Au = f

obtained in this way, now of order N + 1, is given by

A =
µ
h2

tridiag [�1 2 � 1; �1 1] ,

whereas the value  L of the Neumann condition appears in the last entry of the vector f .
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Gerschgorin’s Theorem

Gerschgorin’s Theorem provides some easy-to-check criteria in order to localize the
eigenvalues of a square matrix in the complex plane.

Given a real square matrix A of order n, let us define the Gerschgorin circles

Ci = {z 2 C : |z � aii|  ri =
nX

j=1,j 6=i

|aij | } , i = 1, 2, . . . , n . (26)

Note that the circle Ci has center on the real axis at the point of abscissa aii, and radius
equal to the sum of the moduli of the elements belonging to the row i, outside the
diagonal.

C1

C2

C3

C4
C5

C6

C0
1

C0
2

C0
3

6 18
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Theorem

Let A be a real square matrix of order n and Ci, i = 1, 2, . . . , n, its Gerschgorin discs.

Then:

1 each eigenvaue � di A belongs to the union C =
Sn

i=1 Ci of all Gerschgorin discs.

2 If the union C0 =
Sm

k=1 Cik of m Gerschgorin discs is disjoint from the union of the

remaining n�m discs (we say C0
is a connected component of C), then exactly m

eigenvalues of A belong in C0
.

3 Let A be irreducible, meaning there exists no row or column permutation making A
block diagonal, i.e., of the form

B =

✓
A11 O
OT A22

◆

with A11, A22 square of order < n. If one eigenvalue � lies on the boundary of C,

then � belongs to every Gerschgorin disc of A.

29 / 247



Since the eigenvalues of the transpose matrix AT coincide with those of A, we can apply
Gerschgorin’s theorem to the transpose, and locate eigenvalues with more accuracy; the
centres of the discs are unchanged, whereas radia are the sums of the absolute values of
o↵-diagonal column elements of A.

If A is symmetric its eigenvalues are real, so it is enough to analyse Gerschgorin intervals

bCi, given by the intersections of the discs Ci with the real axis.
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Example

Let A be the irreducible, symmetric 6⇥ 6 matrix

A =

0

BBBBBB@

3 0 1 0 0 �1
0 �2 0 1 1 0
1 0 �1 0 0 0
0 1 0 5 0 3
0 1 0 0 6 �3

�1 0 0 3 �3 18

1

CCCCCCA
.

Gershgorin’s intervals are

bC1 = {x 2 R : |x� 3|  2 } = [1, 5] ,

bC2 = {x 2 R : |x+ 2|  2 } = [�4, 0] ,

bC3 = {x 2 R : |x+ 1|  1 } = [�2, 0] ,

bC4 = {x 2 R : |x� 5|  4 } = [1, 9] ,

bC5 = {x 2 R : |x� 6|  4 } = [2, 10] ,

bC6 = {x 2 R : |x� 18|  7 } = [11, 25] ,

whereas Gershgorin’s disks have been shown three slides back.
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Example (continued)

The connected components are

bC0
1 = bC2 [ bC3 = [�4, 0], bC0

2 = bC1 [ bC4 [ bC5 = [1, 10], bC0
3 = bC6 = [11, 25] .

By Gershgorin’s theorem two eigenvalues of A belong to the open interval (�4, 0), three
are in the open interval (1, 10) and one in the open interval (11, 25). The eigenvalues of
A, computed in MATLAB, read:

�1 = �2.2590...
�2 = �1.2393...
�3 = 3.1028...
�4 = 4.1440...
�5 = 5.8899...
�6 = 19.3616...
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Properties of the finite di↵erence matrix

Let us go back to the matrix A obtained from the discretization of the elastic string
problem by finite di↵erences (defined in (25)).

Theorem

The matrix A is symmetric and positive definite, hence in particular it is non-singular.

Let us remember that a symmetric matrix A is positive-definite if

xTAx > 0 for any vector x 6= 0 ,

or, equivalently, if
all the eigenvalues of A are > 0 .
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The theorem is a consequence of Gerschgorin’s theorem.

Let us check this statement in the particular case in which µ is constant, i.e., when

A =
µ
h2

tridiag [�1 2 � 1] .

The Gerschgorin intervals A are

bC1 = bCN =
µ
h2

{x 2 R : |x� 2|  1} =
µ
h2

[1, 3] ,

bCj =
µ
h2

{x 2 R : |x� 2|  2} =
µ
h2

[0, 4] , j = 2, . . . , N � 1 .

Hence all the eigenvalues of A are strictly positive: in fact, every Gerschgorin interval is
contained in the positive x-semiaxis, and the origin does not belong to all Gerschgorin
intervals; therefore 0 cannot be an eigenvalue.
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Wrap-up on Linear Algebra

Let x = (xi)1in 2 Rn be a column vector with n real entries. If p is an arbitrary real
number � 1, one calls p-norm of x the quantity

kxkp =

 
nX

i=1

|xi|p
!1/p

.

Especially important are the norms

kxk1 =
nX

i=1

|xi| , kxk2 =

 
nX

i=1

|xi|2
!1/2

, kxk1 = max
1in

|xi| .

Let then A = (aij)1i,jn 2 Rn⇥n be a square matrix of size n. To each vector norm
kxk is associated a matrix norm kAk, defined by

kAk = max
x2Rn x 6=0

kAxk
kxk = max

x2Rn kxk=1
kAxk .

From the definition, it easily follows

kAxk  kAk kxk for all x 2 Rn ,

and
kABk  kAk kBk , kIk = 1 .
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In particular, one has

kAk1 = max
1in

nX

j=1

|aij | = kAT k1

and
kAk2 =

p
⇢(ATA) ,

where ⇢(B) denotes the spectral radius of a matrix B, namely

⇢(B) = max{ |�| : � is an eigenvalue of B } .

If A is a symmetric matrix (hence, it has all real eigenvalues), it holds

kAk2 = max{ |�| : � is an eigenvalue of A } .

If, in addition, A is positive definite, with eigenvalues that satisfy

0 < �1  �2  · · ·  �n ,

then, setting �min = �1 and �max = �n, we have

kAk2 = �max .

Recalling that
Aw = �w , A�1w = ��1w ,

we immediately obtain

kA�1k2 =
1
�min

.
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The condition number of a matrix

Let A be a nonsingular, square matrix. The number

condp(A) = kAkp kA�1kp
is called the condition number of A (with respect to the p-norm).
We always have

condp(A) � 1 .

A matrix A is called well-conditioned if condp(A) ' 1, ill-conditioned if condp(A) >> 1.

Let b 2 Rn be a non-zero vector (representing the “input data” of a certain problem, or
the “initial state” of a physical system), and let x 2 Rn be the solution to the linear
system

Ax = b ,

(representing the “solution” to the problem, or the “exit state” of the physical system).
Now suppose to know not b, but rather only an approximation b̃ of it, by a series of
reasons (measuring errors, errors in numerical representation, et c.); correspondingly, we
have a solution x̃ defined by

Ax̃ = b̃ ;

we can reasonably expect x̃ to approximate x. Then, one has:

kx� x̃kp
kxkp

 condp(A)
kb� b̃kp
kbkp

.
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For a positive-definite, symmetric matrix, the condition number in Euclidean norm is
given by

cond2(A) =
�max

�min
.

Hence, a positive-definite, symmetric matrix is ill-conditioned whenever the orders of

magnitude of its eigenvalues are considerably di↵erent.

Example

A typical example of (positive-definite, symmetric) matrices that are very ill-conditioned
is provided by the class of Hilbert matrices Hn (n � 1), whose entries are

hij =
1

i+ j � 1
, 1  i, j  n ,

(such matrices are defined by the MATLAB instruction hilb).
The condition numbers cond2(Hn) (estimated by the MATLAB command cond) grow
exponentially fast as n grows!

38 / 247



Going back to the matrix A of the finite di↵erence discretization, if the physical
coe�cient µ is constant one can explicitly compute its eigenvalues, that we denote by

�h,1 < �h,2 < · · · < �h,p < · · · < �h,N�1 < �h,N ;

indeed, one has

�h,p =
2µ
h2

✓
1� cos

✓
p
⇡h
L

◆◆
, p = 1, . . . , N .

Recalling that 1� cos t ⇠ 1
2 t

2 as t ! 0, and that cos t ! �1 as t ! ⇡, we get the
asymptotic behaviour of the minimum aigenvalue �h,1 and maximum eigenvalue �h,N

when h tends 0 (or, equivalently, when N tends to +1):

�h,1 ⇠ �1 := µ
⇡2

L2
, �h,N ⇠ 4µ

h2
.

In particular, we derive that the condition number of A in Euclidean norm satisfies

cond2(A) =
�h,N

�h,1
⇠ 4L2

⇡2
h�2 ;

Hence, the matrix becomes more and more ill-conditioned as the discretisation step h
decreases.
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Consistency, stability, convergence

Hereafter, let us measure the magnitude of a vector using the mean-square norm

kvk2,m =
1p
N

kvk2 =

vuut 1
N

NX

i=1

|vi|2 ,

or the maximum norm kvk1.
The vector u that solves the algebraic system generated by the finite di↵erence method
satisfies

Au� f = 0 .

Let ue = (u(xj))1jN 2 RN be the vector whose entries are the values of the exact
solution of the equation at the inner nodes. In general, the residual vector, or truncation
error,

Aue � f = r

does not vanish. However, since we have used second order numerical di↵erentiation
formulas, one can prove that

krk2,m  µ
12

h2 max
x2[0,L]

����
d4u
dx4

(x)

���� =
1
12

h2 max
x2[0,L]

����
d2f
dx2

(x)

���� .

Hence, we deduce that
r ! 0 as h ! 0 .

Such a property is termed consistency of the numerical method.
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By substracting equations Aue � f = r and Au� f = 0, we get

A(ue � u) = r , i.e., ue � u = A�1r ,

whence
kue � uk2,m  kA�1k2krk2,m .

But

kA�1k2 =
1
�h,1

 C
1
�1

(independent of h) ;

such an inequality is referred to as the stability of the numerical scheme.

We conclude that

kue � uk2,m  Ch2 max
x2[0,L]

����
d2f
dx2

(x)

���� .

This shows that the numerical method is convergent.
More precisely, if the data f is smooth enough, the mean-square norm of the di↵erence

between the exact and numerical solutions at the internal nodes tends to 0 as h ! 0; in
addition, convergence is second-order, namely quadratic in h.

A similar result holds for the maximum norm kue � uk1.
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DISCRETIZATION BY FINITE ELEMENTS

Finite element methods are based on an integral formulation, or variational formulation,
of the boundary-value problem to be approximated.

Consider the elastic string problem (12), in which we assume the density of force f to be
a piecewise-continuous function on [0, L].

Let us introduce a generic function v, defined on [0, L], representing the string’s generic
displacement from the reference position under external forces.
Using the physics’ language, we shall say v is an ammissible displacement; in
mathematical language, we will call v a shape function.
It is absolutely natural for v to be a continuous map (the elastic string should not break),
and to vanishes at the interval’s endpoints (as the string is fixed there).

Let us multiply the di↵erential equation by an admissible displacement v (called test
function, in this situation) and then integrate over [0, L]; this gives

�
Z L

0

d
dx

✓
µ
du
dx

◆
v dx =

Z L

0

fv dx . (27)
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Now we can integrate by parts the left hand side, thus supposing v is piecewiese
di↵erentiable (at least), with continuous derivative. The equation becomes

Z L

0

µ
du
dx

dv
dx

dx�

µ
du
dx

v

�L

0

=

Z L

0

fv dx . (28)

However, recalling that we had assumed v(0) = v(L) = 0, the boundary terms at x = 0
and x = L are actually zero.

Let us denote by V the set of admissible displacements, i.e., let us define

V = {v : [0, L] ! R | v is continuous on [0, L], piecewise di↵erentiable

with continuous derivative, and such that v(0) = v(L) = 0} .

Note that the solution itself to our problem u is an admissible displacement (it describes
the string’s displacement exactly in correspondence to the load f), hence u 2 V ; this
condition incorporates the vanishing of u at the endpoints.
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So, we can formulate problem (12) in the following integral manner:
8
><

>:

u 2 V and satisfies
Z L

0

µ
du
dx

dv
dx

dx =

Z L

0

fv dx for all v 2 V .
(29)

We shall call the above the variational, or weak, formulation of the elastic string
problem.

It translates in mathematical terms what in Mechanics is known as the Principle of
Virtual Work: the work of an external force under an admissible displacement (given by
the right-hand-side integral of (29)) equals the work of all elastic reactions of the
material (left-hand-side integral).

The di↵erential formulation (12) and the variational one (29) are equivalent if the
problem’s data µ and f (hence the solution u) are regular enough.

The integral formulation allows to treat more general situations
(a piecewiese-continuous elastic coe�cient µ, or a concentrated weight f).
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The set V of all admissible displacements is a vector space: if v1 and v2 are two
admissible displacements, then any linear combination of them, ↵v1 + �v2 with arbitrary
↵,� 2 R, will be an admissible displacement as well.

Furthermore, if both v1 and v2 satisfy the variational equation

Z L

0

µ
du
dx

dv
dx

dx =

Z L

0

fv dx ,

then also ↵v1 + �v2 will satisfy it automatically, due to the linearity of definite integrals
and derivatives.
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We can define a discretization method starting from the variational formulation (29), by
considering only a finite number of independent admissible displacements.

Their linear combinations will give rise to a vector space, that we denote by Vh and is a
subspace of V .

The space Vh is finite-dimensional: the admissible displacements of Vh, called discrete

displacements, will be determined by a finite set of parameters, known as degrees of
freedom of the displacement.

We are thus led to consider the following discrete variational formulation:
8
><

>:

uh 2 Vh and satisfies
Z L

0

µ
duh

dx
dvh
dx

dx =

Z L

0

fvh dx for all vh 2 Vh .
(30)

46 / 247



The finite element method represents a simple yet e↵ective way to define spaces of
discrete displacements Vh to be employed in the discrete variational formulation just
defined.

Once more, we take N + 2 nodes xj in [0, L], satisfying

0 = x0 < x1 < . . . < xj�1 < xj < xj+1 < . . . < xN < xN+1 = L ;

in order to warrant the method a broader generality, we will assume the nodes are not
necessarily equidistant. These nodes define a partition of [0, L] into subintervals
Ij = [xj�1, xj ], j = 1, . . . , N + 1, of length hj = xj � xj�1; let also conveniently set
h = max

j
hj .

The easiest choice for discrete displacements consists in looking at the admissible
displacements that, on each interval Ij , are polynomials of degree 1 at most. So let us set

Vh = {vh 2 V | vh|Ij 2 P1 for j = 1, . . . , N + 1} , (31)

where P1 denotes the set of polynomials on Ij of degree less than or equal to 1.

This choice generates the so-called linear finite elements.
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0 Lxjxj�1 xj+1

vj'j(x)

vj

The discrete displacement vh is uniquely, and comfortably, determined by its values
vj = vh(xj) at the internal nodes (j = 1, . . . , N). On each interval Ij , in fact, we can
write it as

vh(x) = vj�1
xj � x
hj

+ vj
x� xj�1

hj
.

Therefore we can indentify vh with the column vector

v = (v1, v2, . . . , vN�1, vN )T 2 RN .
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xj�2 xj�1 xj xj+1 xj+2

'j

1

This fact naturally leads to defining a basis in Vh, which allows us to write discrete
displacement as a linear combination of the basis functions. We remind that every
v 2 RN can be expressed as

v = v1e1 + v2e2 + · · ·+ vN�1eN�1 + vNeN , (32)

where ej = (�jk) is the column vector, in the canonical basis, whose components are all
0, except the j-th one, which equals 1.

The vector ej defines the discrete displacement 'j 2 Vh that is 0 at all nodes except xj ,
where is equals 1. Such a function is termed hat function, or tent function.
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The hat function 'j is written as

'j(x) =

8
>>><

>>>:

x� xj�1

hj
if x 2 Ij ,

xj+1 � x
hj+1

if x 2 Ij+1 ,

0 otherwise .

(33)

Thus, we can represent each vh 2 Vh as

vh(x) = v1'1(x) + v2'2(x) + · · ·+ vN�1'N�1(x) + vN'N (x) =
NX

j=1

vj'j(x) . (34)

The functions 'j , j = 1, . . . , N , form the so-called Lagrange basis in Vh.
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Reduction to an algebraic system

Let us recall that the approximate solution uh 2 Vh satisfies the discrete variational
equations Z L

0

µ
duh

dx
dvh
dx

dx =

Z L

0

fvh dx for all vh 2 Vh . (35)

Choosing as vh the basis functions 'j one at a time, we immediately see that uh

satisfies, in particular, the N equations

Z L

0

µ
duh

dx
d'j

dx
dx =

Z L

0

f'j dx for j = 1, . . . , N . (36)

This system is indeed equivalent to the system of infinitely many equations (35). In fact,
each such equation is a linear combination of the equations (36), due to the linearity of
definite integrals and derivatives.

Next, let us represent uh in the Lagrange basis, as

uh =
NX

k=1

uk'k.

Substituting in (36), we get:
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Z L

0

µ
d
dx

 
NX

k=1

uk'k

!
d'j

dx
dx =

Z L

0

f'j dx for j = 1, . . . , N .

Using once more the linearity of derivatives and definite integrals, we arrive at the system
of algebraic equations

NX

k=1

uk

Z L

0

µ
d'k

dx
d'j

dx
dx =

Z L

0

f'j dx for j = 1, . . . , N . (37)

Setting

ajk =

Z L

0

µ
d'k

dx
d'j

dx
dx , fj =

Z L

0

f'j dx , (38)

the system (37) is written as

NX

k=1

ajkuk = fj for j = 1, . . . , N .
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Repeating,
NX

k=1

ajkuk = fj for j = 1, . . . , N .

It is convenient to write such a system in matrix form, as

Au = f , (39)

after setting

A = (ajk) 2 RN⇥N , u = (uk) 2 RN , f = (fj) 2 RN .

The matrix A is referred to as the sti↵ness matrix.
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Computation of the sti↵ness matrix

Let us recall that

ajk =

Z L

0

µ
d'k

dx
d'j

dx
dx =

N+1X

m=1

Z

Im

µ
d'k

dx
d'j

dx
dx .

Thus, we note that

the matrix A is symmetric,

each entry of the matrix can be obtained by adding the contribution of each interval
of the partition.

A crucial observation is that the basis function 'j vanishes identically outside the interval
[xj�1, xj+1], that we call the support of 'j . Hence, the product

d'k

dx
d'j

dx

vanishes identically if the supports [xk�1, xk+1] and [xj�1, xj+1] do not intersect, i.e., if
|j � k| > 2.
If |j � k| = 2, instead, the supports meet at one point only, yet the product is still 0 on
each Im.
In either case, i.e. for |j � k| � 2, the entry ajk is zero.
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xj�4 xj�3 xj�2 xj�1 xj xj+1

'j�3 'j

xj�4 xj�3 xj�2 xj�1 xj xj+1

'j�2 'j

xj�4 xj�3 xj�2 xj�1 xj xj+1

'j'j�1
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Now let us suppose k = j � 1. The functions 'j�1 and 'j have supports intersecting in
[xj�1, xj ] = Ij ; the product of their derivatives is therefore null outside that interval, so

aj,j�1 =

Z

Ij

µ
d'j�1

dx
d'j

dx
dx .

On Ij basis functions are linear, so their derivatives are constant; to be precise, recalling
that

'j(x) =

8
>>><

>>>:

x� xj�1

hj
if x 2 Ij ,

xj+1 � x
hj+1

if x 2 Ij+1 ,

0 otherwise ,

we have
d'j�1

dx
= � 1

h j
,

d'j

dx
=

1
h j

;

hence,

aj,j�1 = � 1
h2
j

Z

Ij

µdx = �hj

h2
j

 
1
hj

Z

Ij

µdx

!
= � 1

hj
µ̄j�1/2 ,
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where

µ̄j�1/2 =
1
h j

Z

Ij

µdx

denotes the mean value over Ij of the elastic coe�cient µ. Often this number cannot be
computed exactly, rather we can approximate it, for instance, by the coe�cient’s value
µj�1/2 = µ(xj�1/2) at the interval’s middle point xj�1/2 = (xj�1 + xj)/2.

In conclusion, we set

aj,j�1 = � 1
hj

µj�1/2 .

At last, let us consider the diagonal entry ajj . We have

ajj =

Z

Ij

µ

✓
d'j

dx

◆2

dx+

Z

Ij+1

µ

✓
d'j

dx

◆2

dx

with
d'j

dx
=

1
hj

on Ij ,
d'j

dx
= � 1

hj+1
on Ij+1 .

Hence, possibly with the same approximation of the elastic coe�cient as above, we get

ajj =
1
h j

µj�1/2 +
1
h j+1

µj+1/2 .
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To sum up, the sti↵ness matrix is symmetric and tridiagonal, with entries:

ajk =

8
>>>>>><

>>>>>>:

µj�1/2

hj
+

µj+1/2

hj+1
if k = j ,

�
µj�1/2

hj
if k = j � 1 ,

�
µj+1/2

hj+1
if k = j + 1 ,

0 otherwise .

(40)

In the particular case where µ is constant and the mesh is equally spaced (i.e., hj = h for
all j), one has

ajk =
µ
h

8
><

>:

2 if k = j ,

�1 if k = j � 1 or k = j + 1 ,

0 otherwise ,

namely,

A =
µ
h
tridiag [�1 2 � 1] .
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Computation of the forcing term

We have

fj =

Z

Ij

f'j dx+

Z

Ij+1

f'j dx .

For a generic force density we cannot calculate the integrals exactly; each one must
therefore be approximated by a numerical integration formula. Using the trapezoidal rule

Z b

a

g dx ' (g(a) + g(b))
b� a
2

(which is exact if g is linear in [a, b]) and recalling the 'j vanishes at xj�1 and xj+1, and
equals 1 at xj , we obtain the approximate value

Z

Ij

f'j dx ' f(xj)
hj

2
,

Z

Ij+1

f'j dx ' f(xj)
hj+1

2
.

Thus, in the actual computations we set

fj = f(xj)
hj + hj+1

2
. (41)
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It is interesting to compare the structure of the algebraic system obtained by the finite
di↵erence discretisation,

ADFuDF = fDF ,

with that of the system obtained by the finite element discretisation,

AEFuEF = fEF .

Each entry of either the matrix AEF or the source fEF is of the order of h times the
corresponding entry of ADF or fDF , where h is the local discretisation spacing.
Dimensionally, this is absolutely consistent if we recall that the variational formulation of
the elastic string problem, generating the finite element discretisation, arises by
integrating over the spatial interval the di↵erential formulation, at the base of the
discretisation by finite di↵erences.

For equidistant subdivisions of [0, L] (h constant) and source terms computed via the
trapezoidal rule, we even have

AEF = hADF and fEF = hfDF ,

whence
uEF = uDF .

Thus, the two methods provide the same approximation for the displacement u.
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Properties of the finite element discretization

The matrix A is symmetric and positive definite (again by Gerschgorin Theorem).

The condition number of A satisfies:

�h,min ⇠ c h , �h,max ⇠ c h�1 ) cond2(A) =
�h,max

�h,min
⇠ c h�2 .

The error between the exact solution u and the discrete solution uh satifies:

max
x2[0,L]

|u(x)� uh(x)|  Ch2 max
x2[0,L]

����
d2u
dx2

(x)

���� .
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Non-homogeneous Dirichlet boundary conditions

Let us assume that we want to satisfy

u(0) = g0 , u(L) = gL .

Two new basis functions are needed, i.e., '0 associated with node x0 = 0 and 'N+1

associated with node xN+1 = L.

The discrete solution uh is now expressed as

uh(x) = g0'0(x)+
NX

k=1

uk'k(x)+gL'N+1(x)

namely uh2Vh(g0, gL)
(space of discrete admissible displacemets) x0 = 0 x1 xN xN+1 = L

1

'0 'N+1

The discrete variational formulation is now:
8
><

>:

uh 2 Vh(g0, gL) and satisfies
Z L

0

µ
duh

dx
dvh
dx

dx =

Z L

0

fvh dx for all vh 2 Vh(0, 0) .

(space of discrete test displacements)
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The first equation becomes

a10g0 + a11u1 + a12u2 = f(x1)
h1 + h2

2

with

a10 =

Z

I1

µ
d'0

dx
d'1

dx
dx ' �

µ1/2

h1
.

Hence, ✓
µ1/2

h1
+

µ3/2

h2

◆
u1 �

µ3/2

h2
u2 = f(x1)

h1 + h2

2
+

µ1/2

h1
g0 .

In an analogous manner we enforce the condition in x = L.

In conclusion, for finite elements too, it is enough to modify the first and last entries of
the right-hand side.
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Neumann boundary conditions

Let us assume that we have to enforce

u(0) = 0 , µ
du
dx

(L) =  L .

Now, any admissible displacement v is required to vanish only at x = 0:

V = {v : [0, L] ! R | v is continuous on [0, L], piecewise di↵erentiable

with continuous derivative, and such that v(0) = 0} ,

whereas the discrete admissible displacements

Vh = {vh 2 V | vh|Ij 2 P1 for j = 1, . . . , N + 1}

are generated by the basis functions

'1(x), . . . ,'N and 'N+1 ,

i.e.,

vh(x) =
NX

j=1

vj'j(x)+vN+1'N+1(x) .
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The variational formulation gets modified: indeed, starting from

Z L

0

µ
du
dx

dv
dx

dx�

µ
du
dx

v

�L

0

=

Z L

0

fv dx for any v 2 V ,

we now use the Dirichlet condition v(0) = 0 and we enforce the Neumann boundary
condition at x = L, to get


µ
du
dx

v

�L

0

= µ
du
dx

(L)v(L)� µ
du
dx

(0)v(0) =  Lv(L) ,

Hence, 8
><

>:

u 2 V and satisfies
Z L

0

µ
du
dx

dv
dx

dx =

Z L

0

fv dx +  Lv(L) for all v 2 V ,

whereas
8
><

>:

uh 2 Vh and satisfies
Z L

0

µ
duh

dx
dvh
dx

dx =

Z L

0

fvh dx +  Lvh(L) for all vh 2 Vh .
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The Neumann condition influences only the last equation of the algebraic system
Au = f , whose size is now N + 1.

The entries ajk of A are defined as for the case of Dirichlet boundary conditions, except
for the element aN+1,N+1, whose value is

aN+1,N+1 =

Z

IN+1

µ

✓
d'N+1

dx

◆2

dx =
1

hN+1
µN+1/2 ,

since the last basis function, 'N+1, has support only on the interval IN+1.

Similarly, for the last entry fN+1 of the right-hand side f , we have

Z L

0

f'N+1 dx =

Z

IN+1

f'N+1 dx ' f(xN+1)
hN+1

2
(by the trapezoidal rule) ,

hence, in conclusion, we set

fN+1 = f(L)
hN+1

2
+  L .
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An elastic model with restoring

Let us now consider a slightly more complicated model of elastic string. To be precise, we
shall assume that on the string acts, in addition to the volume density of force f , also a
(density of) restoring force r proportional to the displacement u and oppositely oriented:

r = ��u ,

with � � 0 being the proportionality factor.

The mathematical model becomes
8
>>><

>>>:

d⌧
dx

+ f � �u = 0 in (0, L) ,

⌧ = µ
du
dx

in (0, L) ,

u(0) = u(L) = 0 ,

i.e., 8
<

:
� d
dx

✓
µ
du
dx

◆
+ �u = f in (0, L) ,

u(0) = u(L) = 0 .
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The problem’s discretisation by finite di↵erences or finite elements still leads to an
algebraic system like

Au = f ,

where now the sti↵ness matrix A can be written as sum of two matrices,

A = A(µ) +A(�) ,

the former (already known) accounting for the shear e↵ects, the latter being a
consequence of elastic restoring.

Discretization by finite di↵erences

Equations now become

1
h2

�
�µj�1/2uj�1 + (µj�1/2 + µj+1/2)uj � µj+1/2uj+1

�
+ �juj = fj ,

where we have set �j = �(xj).

Hence,
A(�) = diag ((�j)1jN ) .
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Discretization by finite elements

The discrete variational formulation now becomes
8
><

>:

uh 2 Vh and satisfies
Z L

0

✓
µ
duh

dx
dvh
dx

+ �uhvh

◆
dx =

Z L

0

fvh dx for all vh 2 Vh ;

after introducing the Lagrange basis, we obtain from it the equations

Z L

0

✓
µ
duh

dx
d'j

dx
+ �uh'j

◆
dx =

Z L

0

f'j dx for j = 1, . . . , N ,

i.e.,

NX

k=1

uk

✓Z L

0

µ
d'k

dx
d'j

dx
dx +

Z L

0

�'k'j dx

◆
=

Z L

0

f'j dx for j = 1, . . . , N .

Thus,

A(�) = B = {bjk}1j,kN with bjk =

Z L

0

�'k'j dx .
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The matrix B is tridiagonal, symmetric and positive semi-definite. Precisely, one has

bjk =

8
>>>>><

>>>>>:

1
3 (�j�1/2hj + �j+1/2hj+1) if k = j ,

1
6�j�1/2hj if k = j � 1 ,

1
6�j+1/2hj+1 if k = j + 1 ,

0 otherwise ,

with

�j�1/2 ⇠ 1
hj

Z

Ij

�(x) dx , �j+1/2 ⇠ 1
hj+1

Z

Ij+1

�(x) dx .

In the particular case in which � is constant on [0, L] and the partition of the interval is
equally spaced with step h, the previous expression takes the simplified form

bjk = �h

8
>><

>>:

2
3 if k = j ,

1
6 if k = j ± 1 ,

0 otherwise ,

i.e., one has
B = �h tridiag

⇥
1
6

2
3

1
6

⇤
.
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